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Abstract

Detecting and recognizing when there is a deviation in process behavior is a crucial aspect
of industrial automation. This study investigates one such deviation, a volume discrepancy acci-
dentally introduced during the commissioning of a Tetra Pak Standardization Unit (TPSU). The
analysis aims to develop theory for a future implementation with the purpose of detecting this
deviation by evaluating principal component analysis-based (PCA-based) detection methods and
frequency spectrum analysis (FSA). The comparison focuses on the accuracy, validity, reliability,
and feasibility of the detection methods. Results demonstrate that FSA is the most promising
method and two approaches to implementation are proposed, evaluating the strengths and limi-
tations of each approach. This work acts as a guide and framework for Tetra Pak to use during a
potential future implementation and provides insights into necessary future work.
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1 Introduction

1.1 Background

To develop and maintain an e�cient and consistent refinement process, understanding of occurrences
of issues is crucial to allow for optimization and quick resolutions of faults. Many industrial processes
track e�ciency in the form of margins around a set workpoint, which creates an interval within which
the results of these processes are expected to be confined.

To further optimize these processes, it is essential to narrow this interval, which could result in
a reduced amount of resources needed for production. To accomplish this, the identification of the
occurrences of issues, their origin, and possible solutions is a key concept. One of these processes is
the in-line standardization of milk and cream at Tetra Pak.

Tetra Pak was founded 1951 in Sweden by Ruben Rausing and Holger Crafoord. Today, they
are a world leading food processing and packaging solution company. They are delivering solutions
to customers and suppliers in more than 160 countries around the world. Tetra Pak is divided into
two divisions, processing and packaging. The processing division handles dairy, cheese, ice cream,
beverage, New Food, powder and plant-based. The main o�ce is located in Lund, where they develop
automated solutions for dairy milk and cream fat standardization. [1]

Furthermore, to standardize cream and milk fat content and other components of milk such as
protein, Total-solids, etc., in-line in the milk process in the dairy industry, the Tetra Pak® Stan-
dardization Unit (TPSU) can be used. The TPSU is acknowledged worldwide with a class leading
performance in control precision (fat, protein, etc.). It is, together with its predecessor, installed in
1000 dairy processing lines around the world. The process begins with the processing of raw milk in
a centrifugal separator, which separates the raw milk into a light phase and a heavy phase. [2] The
output of this machine is normally cream with 40% fat and milk with 0.02-0.08% fat, however milk for
direct consumption is produced with di↵erent fat levels, such as 0.5 %, 1.5 % and 3 %. Therefore, some
of the separated cream is remixed with the separated skim milk to standardize the milk fat content
within the desired level, which is the task of the TPSU.

Governmental food authorities mandate that the fat content in milk must strictly exceed the fat
content of the labeled packaging. As a result, many producers opt to produce milk with a fat content
of +0.15 percentage units above the working setpoint for the standardized milk fat content. TPSU
o↵ers greater e�ciency, allowing producers to reduce fat content to +0.015 percentage units above the
same working setpoint [3].

Figure 1: Tetra Pak Standardization Unit
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1.2 Aim of Research

A common issue is that the performance of the process is not fully optimized, which could be due to
lack of skills during commissioning, poor maintenance of the equipment, or issues in the surrounding
process.

In the system today, there are some statistical analysis tools that are used for visualization available
to the user. The system is monitored in discrete events, i.e. it creates an alarm when process parameters
exceed a limit setpoint during a certain time. For example, when the standardized fat content is too
high or when the density is too low. To maintain e�cient production and produce products of high
quality for the customer, monitoring of performance is crucial to provide feedback to the machine
operator to minimize the e↵ects of any malfunctions or deviating events.

The challenges are in identifying the occurrence of an issue, to help streamline the process and
enable the possibility of optimization. The identification of these issues focuses mainly on their origin,
whether they are due to, e.g. limitations in the hardware of the Programmable Logic Controller (PLC),
or due to lack of information about the process in the available data. The latter, corresponding to
a number of di�culties, one of which is a discrepancy between the actual volume parameter and the
monitor volume parameter, causes disturbances and leads to an increment of the integral time of the
system, resulting in a slower response. By detecting these issues at an early stage, production can
resume quickly and maintain an e�cient working setpoint.

The purpose of the research is to understand how a process can be better monitored and controlled,
to maximize the profit for the customer, and to improve the machine. More specifically, it will aim
to investigate whether it is possible to identify a volume parameter deviation, through statistical and
mathematical methods, for the process to maintain within its own limitation and thus make it more
stable. The methods will also be evaluated to determine which is the most suitable for identification
of the issue and, moreover, establish a foundation for a future software implementation.

To conduct an initial comparison of di↵erent statistical methods, “Pattern recognition and machine
learning” by Bishop, C.M. (2006) will be used as the literature of reference [4]. The comparison will
mainly focus on the benefits and drawbacks of the statistical methods, as well as the applicability to
the process. Furthermore, to fully understand the process during the initial stages of the project, Dairy
Processing Handbook by Tetra Pak was provided by Tetra Pak to help identify key characteristics and
process parameters [3].

1.3 Objectives

The objective of the Master’s thesis project is to find and/or develop theory that is suited to analyze
data in the application in terms of system performance and performance indicators when there is a
present volume discrepancy in the system to reduce human error. Furthermore, the theory should
serve as a foundation for future software implementations.

1.4 Limitations

There are some limitations in this project. The project is limited to direct in-line fat standardization
of separated cream and milk without external/additional ingredients. The available real-world data
provided from Tetra Pak is limited and therefore adds some additionally restrictions to the research.
Data is only available in a confined time period from two di↵erent machines, where only the measured
process parameters are known. Therefore, the study will have to be based solely on these available
datasets and their respective recipes and measurements.

In addition to this, Tetra Pak provides hardware, and software with the capability to simulate
the production in a su�ciently realistic way. However, similarly to the majority of simulations, this
software might not fully represent the real process, and can thus be considered a limitation.
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2 Process setup

This section describes the principle of standardization and the physical process.

2.1 The Chemistry of Cow Milk

The principal constituents of milk are water, fat, proteins, lactose (milk sugar) and minerals (salts).
The average composition of the main components of cow milk can be seen in Table 1. Milk fat exists
as small globules or droplets dispersed in the milk serum, and milk fat is liquid above 37° C. Together,
fat, proteins, lactose and minerals are labeled as total solids (TS), and solid-non-fat (SNF) is defined as
the total solids minus the fat. The density of milk and cream is determined by the amount of di↵erent
constituents in the solution and the temperature.

Component Average composition (%)
Moisture 87.5
Fat 3.9
Proteins 3.4
Lactose 4.8
Minerals (Ash) 0.8

Table 1: Average composition (%) of cow milk constituents

2.2 Principle of Standardization and Calculation for Blending of Products

Standardization involves the process of making something conform to a certain standard, in this case
adjustment of the fat content of milk by addition of cream or skim milk to obtain a desired output fat
level. Whole milk is therefore first separated into cream and skim milk, thereafter a certain amount of
fat content from the separated cream is remixed into the skim milk to achieve the given setpoint value.
This relation is described in Equations 1 and 2. From the equations, it is then possible to calculate
the amounts of A and B needed to obtain the desired quantity (X) of C. [3]

A = Cream fat content, %

B = Skim milk fat content, %

C = Fat content of the end product, %

X = Desired quantity of C (end product)

X
C �B

(C �B) + (A� C)
= Amount [kg] of A (1)

X
A� C

(C �B) + (A� C)
= Amount [kg] of B (2)

The general process of standardizing, together with example values for calculation, is described in
Figure 2.

9



Figure 2: Principle of fat standardization. The process begins with 100 kg of whole milk with 4% fat,
the recipe is 3% standardized milk and surplus cream with 40% fat. Separation of 100 kg milk yields
90.1 kg of skim milk with 0.05% fat and 9.9 kg of cream with 40% fat. The amount of 40% cream that
must be added to the skim milk is 7.2 kg. In the end, this gives a total of 97.3 kg of 3% milk, leaving
9.9 - 7.2 = 2.7 kg surplus 40% cream.[3]

2.3 Process Overview and Process Flow

The complete process for hot milk standardization (>40° C) used for this Master’s Thesis is explained
in this section.

Raw milk is stored in large tanks, where laboratory measurements are made on sample data to
determine fat content, protein and SNF or TS. This is called Quality Assurance (QA). After this,
the whole milk is heated to 40-65° in a pasteurizer or a thermizer, and the warm whole milk is then
transported to a separator. This Master’s thesis will consider only the use of a hermetic separator.
The separator uses centrifugal forces to separate the cream from the raw milk. At the separator outlet,
there are pumps for skim milk and cream, which add pressure. In addition, there is a flow regulating
valve in the separated cream and a valve to maintain constant pressure on the skim milk. The cream
leaves the separator with a setpoint between 20-60 % fat content and the skimmed milk contains
around 0.02-0.08 % fat. Lastly, TPSU is used to regulate the mass flow of cream back to skim milk,
to achieve the desired setpoint of fat level, with standardized surplus cream and standardized milk as
the two end products. [3]

Throughout the two pipes connected to the separator, there are several sensors and two regula-
tors. In the pipe connected to the cream outlet, there is a temperature transmitter and a massflow
transmitter, then regulator 1 is used to calculate and control the mass flow of separated cream, and
regulator 2 is used to control the remixing in the system. In the pipe transporting skim milk, there is a
flow transmitter and a valve that maintain constant skim milk back pressure to the separator. Lastly,
in the remixing pipe there is a flow transmitter. The transmitters are used to take measurements and
collect data from the system. An in-depth description of the system is shown in Figure 3.[3]

10



Figure 3: Complete process overview for automatic, direct standardization of milk and cream. 1. Mass
flow transmitter. 2. Flow transmitter. 3. Control Valve. 4. Control Panel. 5. Constant-pressure
valve. 6. Change-over valve. 7. Check Valve. [3]

2.4 Process Parameters

The process utilizes both flow and mass flow transmitters to measure flow, mass flow, and densities.
The most relevant process parameters are shown in Table 2. However, it should be noted that this
table does not display all the relevant parameters for this apparatus.

Symbol Description

Q = Flow [m³/s]
Qc = Flow of cream [m³/s]
Qs = Flow of skim milk [m³/s]
Qr = Flow of of raw milk [m³/s]
Qadd = Flow of cream in mixing pipe [m³/s]
µ = Rate of mass flow [kg/s]
µc = Rate of mass flow of cream [kg/s]
µs = Rate of mass flow of skim milk [kg/s]
µr = Rate of mass flow of raw milk [kg/s]
µadd = Rate of mass flow in mixing pipe [kg/s]
⇢ = Density of cream [kg/m³]
Cf = Concentration of fat [%]
Cc,f = Concentration of fat in cream [%]
Cs,f = Concentration of fat in skim milk [%]
Cr,f = Concentration of fat in raw milk [%]

Table 2: Overview of some important variables used in the process model.

The process parameters translate to di↵erent simulation tags, which can be seen in Appendix B.

2.5 Equations of Equilibrium

The characteristics of the system can be described using the mass flow equations. Given the concen-
tration and flow, the mass flow can be calculated using

µ = Q · Cf (3)

11



where Q is the flow, µ is the rate of mass flow and C is the fat concentration at the point of analysis.
The mass flow is calculated as the volume flow times the density. The incoming mass flow of raw milk
entering the system will always be equal to the mass flow of cream and skim milk according to the
equation of continuity. [3] This gives

µr = µc + µs (4)

Combining eq. 3 and eq. 4, the equation of equilibrium can be obtained, where Qr = (Qs +Qc).

Qr · Cr,f = Qc · Ccf +Qs · Csf (5)

2.6 Cascade Control of the Process

To remain in proximity to the setpoint, the process uses cascade control to control the separated cream
fat content. The system consists of two regulators that are connected in series. These regulators
indirectly control the flow dynamics of the system to meet the desired characteristics of the end
product. The first regulator determines the flow of cream, while the second regulator determines the
flow of cream that is added to the skim milk at the mixing point. The setpoint for the first regulator
is the percentage of cream fat, and the process value is the concentration of cream fat. [3]

The cascade control has two modes, one inactive state at startup and one active during production.
At startup the concentration of fat in the raw milk Cr,f is a fixed parameter measured from a laboratory
sample. When cascade control is active during production, this value is calculated with equation (5).

2.7 Volume Deviation Definition

There are di↵erent volumes in the process, but for the purpose of this study, the volume is defined as the
total volume of the hermetic separator outlet in addition to the volume in the separated cream outlet
pipe. This volume is typically around 10-30 l and is fixed manually during machine commissioning.

The volume deviation, often referred to as the volume error or volume discrepancy, originates from
a calibration error where the monitored value used by the PLC does not match the actual volume of
the process. This results in the first regulator in Figure 2 performing calculations using the wrong
volume, which in turn results in a regulator problem and induced oscillations.

12



3 Deviation analysis

In industrial processes, a high performing system is crucial. A frequently used technique utilized for
this is fault detection. Fault detection is based on the identification of abnormal process behavior and
deviations to avoid risks of poor performance or process failure.

3.1 Deviations

Deviations in the process behavior can occur in various ways. There are both human-caused deviations
and natural deviations caused by the process. However, both types of deviation are important to detect
and distinguish, so that the problem is addressed appropriately.

One common deviation is the previously mentioned volume deviation. The problem is introduced
manually during machine commissioning, typically there is a lack of knowledge of the actual volume
or it is measured wrong, and therefore the monitored value is configured poorly. This deviation causes
instability, and therefore oscillations will appear in the process, which are monitored visually in the
user interface (UI). For maintenance personnel or service engineers, when commissioning the unit, a
typical solution is to increase the integral time of regulator 1 which in turn will result in a slower and
more ine�cient system. Slow control will, moreover, make the system unresponsive to disturbances,
resulting in the wrong process value for a long time. To be able to deliver world-class performance
with minimal resource waste, the volume discrepancy needs to be resolved early in the process. This
deviation will be the target of detection.

3.2 Data Collection

Data is collected from m di↵erent features, measured during a finite, predefined time period with �T
time interval separating the di↵erent measurements. Each measurement is an individual sample in
the dataset. The data is then stored and represented by m features and n number of measurements.
Consider the collected data arranged in an n⇥m matrix (X) as follows:

X =

0

BBBBBB@

x11 x12 · · · x1j · · · x1m
...

...
...

...
xi1 xi2 · · · xij · · · xim
...

...
...

...
xn1 xn2 · · · xnj · · · xnm

1

CCCCCCA
=

�
v1 | v2 | · · · | vj | · · · | vm

�
(6)

where each row vector (xi) represents measurements of all features at a specific time instant.
Similarly, each column vector (vj) represents all measurements of a feature in a certain time interval.
The matrix contains measurements with di↵erent units and magnitudes, hence pre-processing of the
data is of necessity.

3.3 Data Pre-Processing

To make the evaluation yield as much as possible, the datasets require pre-processing. Many methods
used for statistical analysis require standardization of the data, since the di↵erent variables in the
dataset are of di↵erent magnitudes and units. Di↵erent scales can inhibit the use of statistical methods
that need quantitative data to perform calculations of quantitative measures such as (co)variance. To
resolve this issue, autoscaling is used. The standardization of data is described in equation (7), where
a standardized feature z is calculated by removing the mean µ from a sample x and scaling it to unit
variance with a factor �. [4]

z =
(x� µ)

�
(7)

Following this section, the scaled data is denoted as xij instead of z for simplicity. Furthermore, it is
important to note that a more comprehensive pre-processing of data is usually performed. However, the
data is simulated and does not contain outliers or missing values. Therefore autoscaling is considered
su�cient.
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3.4 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique to reduce dimensionality in complex datasets.
The method transforms high-dimensional data into a lower-dimensional space while maintaining a
maximized variance. PCA is frequently used to explore, visualize, and analyze data in industrial
processes. PCA is defined as the orthogonal projection of data into a lower-dimensional linear space.
[5] The variables are transformed and de-correlated into vectors in a principal subspace, while the
variance of the projected data is maximized.

Given the scaled data matrix X in equation (6), the covariance matrix Cx is defined as a m ⇥m
square symmetric matrix, where m is the number of dimensions:

CX ⌘ 1

n� 1
X>X =

1

n� 1

0

BBBBBB@

v>1 v1 v>1 v2 . . . v>1 vj . . . v>1 vm
...

... . . .
... . . .

...
v>j v1 v>j v2 . . . v>j vj . . . v>j vm
...

... . . .
... . . .

...
v>mv1 v>mv2 . . . v>mvj . . . v>mvm

1

CCCCCCA
(8)

The matrix measures the degree of linear relationship between all pairs of features. The values
correspond to the covariance between the pairs of variables. [6]
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A positive value indicates correlation, a zero value indicates no correlation, and a negative value
indicates inverse correlation. Furthermore, the variance of a given variable is defined as the average of
the squared di↵erences from the mean and is described in eq. 10, where the square root of the variance
is the standard deviation.
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vT
j vj =

1

n� 1

nX

i=1

x2
ij (10)

Subsequently, the variance of each individual variable is given by the values on the diagonal of the
covariance matrix. The aim is to arrange the data along the directions of maximal variance, therefore
the original data has to be transformed into di↵erent orthonormal basis. The covariance matrix is
symmetric, hence it has m real eigenvalues �j , equivalently it also has m orthonormal eigenvectors pj .
Together, these form a basis in the m-dimensional space. The transformation matrix P is chosen as
follows:

P = (p1 | p2 | . . . | pj | . . . | pm) (11)

This matrix has zero covariance, and consequently the row vectors are not correlated with their
respective variances given by the eigenvalues of the covariance matrix Cx of the original data. The
eigenvectors represent the direction of the axes where the most variance is captured, respectively, the
eigenvalues represent the amount of variance captured in each eigenvector. Moreover, the eigenvalues
are then ordered in descending order, with the first eigenvector accounting for the highest amount
of variance captured, thus being the most significant, the second principal component, orthogonal to
the first, accounting for the second largest variance, and this pattern continues for the subsequent
components. The eigenvectors are also referred to as principal components. [6]

Since the eigenvalues are ordered by importance, it is possible to reduce the dimensionality of the
dataset X by choosing a limited number r of principal components. There exist various methods on
how to choose a suitable number of principal components, one of them is to choose the amount of
eigenvalues that account for a cumulated variance explanation above 90%. [7]

The reduced transformation matrix P has the dimensionsm⇥r and is defined according to equation
(12):

P = (p1 | p2 | · · · | pr) (12)
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The new vector is used to reorient the data from the original axes to those represented by the
principal component by transposing the original dataset with the transpose of the reduced matrix. X
can then be written as:

T = XP (13)

X = X̂+ X̃ (14)

X̂ = X(PPT) (15)

X̃ = X(I�PPT) (16)

where X̂ is the projection of the data matrix X onto the selected r principal components and X̃ is
the projection onto the residual left components.

Principal components in a 3D-space

PC1

PC2x1
x2

x3

3.5 Data Requirements for PCA

The collected data need to be two-dimensional, multivariate and contain high redundancy, to be able
to reduce the dimensions in a meaningful way [5]. It is also assumed that there is a linear relationship
between the variables, this means that the data requires a linear relationship with at least 30 % of the
original variables m that are correlating with a value X of |X| = 0.45 or higher [8]. Moreover, the
data need to be free from outliers and there need to be a su�cient number of available measurements.
Generally, a sample size of at least five to ten times the number of variables is recommended to perform
PCA [9].

Furthermore, each sample for an individual value is expected to be independent of the other samples.
This means that there should not be any autocorrelation between the data samples. Nevertheless,
industrial processes generally di↵er from this rule. Most industrial processes contain a high amount of
autocorrelation, but PCA is still possible since it is used to create a standard space based on historical
data during good operation and, with this standard model, identify abnormalities. In other words,
the PCA model learns slow changes in the process resulting in deviations, creating abnormal residues,
being possible to detect. [10] [11] To help with this deviation analysis, Hotellings T 2 and Q residuals
is used, and explained more down below.

3.6 Hotelling’s T 2

While PCA helps to analyze complex systems e�ciently, it is rarely used on its own. To complement
PCA, Hotelling’s T 2 distribution is used to further analyze and visualize deviations in process behavior.
Hotelling’s T 2 values describe a measure of the variance captured within the PCA-model for each
sampled value.

Mathematically, Hotelling’s T 2 value is a weighted sum of squares and is described in the PCA
transformed space in equation (17)

T 2
i = tiPLtTi P

T (17)

In this equation ti represents a vector of the scores of the principal components for the i-th ob-
servation and L is a diagonal matrix where each element is 1/�j where �j are the eigenvalues of the
covariance matrix. The P matrix is the transformation matrix.
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3.7 Q residuals

To complement Hotelling’s T 2 statistics, the Q residuals describe the extent to which each sample
conforms to the established PCA model. It is a residual between the sample and the corresponding
projection with the chosen number of principal components. The Q statistics take into account the
residuals that appear because the principal components retained cannot reproduce the original data
to a full extent [5]. The Q statistic of the i-th observation vector xi is defined in equation (18).

Qi = xi(I�PPT )xT
i (18)

The P matrix is the same transformation matrix used in (17). The Q distribution is, together
with Hotelling’s T 2 distribution, used in fault detection [6], when a predetermined threshold separates
deviations from the normal process behavior.

3.8 Frequency Spectrum Analysis

Spectrum analysis is a commonly used method within frequency domain analysis. A signal in the time
domain x(t) can contain di↵erent frequencies, and to understand what di↵erent frequencies are present
in the signal, frequency spectrum analysis is used. Di↵erent frequencies can be represented by the
sinusoidal signal in equation (19). A is the amplitude, f0 is the frequency in Hz and t is the time. A
lower frequency f0 is equal to a slower component. [12]

x(t) = A · sin(2⇡f0t) (19)

This technique then utilizes the transformation of time series data into discrete frequency compo-
nents using the Discrete Fourier Transform (DFT). The computation of the DFT is described in (20),
where xn is the value of the signal at the n:th sampling point, k is the index of the current frequency
component and N is the total number of samples. [12]

Xk =
N�1X

n=0

xn · e�i⇡ 2kn
N (20)

Xk then represents how intense a contribution from a certain frequency in the signal is. Hence, the
frequency spectrum displays which signals are present and the amplitude for each frequency component.
If a certain distortion is made up of a specific frequency, it is possible to utilize the spectrum diagram
to detect the noise. [13]

3.9 Nyquist-Shannon Sampling Theorem

For a signal to be completely determined by its sampled counterpart, it must be sampled at a rate of
minimum twice the highest existing frequency in the signal. This highest existing frequency is defined
as the Nyquist frequency. [12]

fn
fs
2

(21)

3.10 Low-Pass Filter

A low-pass filter is a filter that allows signals with a frequency smaller than the cuto↵ frequency to
pass and attenuates any frequencies higher than the cuto↵ frequency. These filters are popular when
trying to avoid anti-aliasing and conform to the Nyquist-Shannon sampling theorem described in 3.9.
[14] [15]

3.11 Band-Pass Filter

A band-pass filter is a filter that passes signals in a selected frequency band and attenuates any
frequencies outside of this band. Band-pass filters can be used to isolate certain frequencies during
frequency spectrum analysis to highlight the desired characteristics of the signal. [15]
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4 Available data

Two data logs are available from two di↵erent companies. These logs contain production data spanning
multiple weeks operating in di↵erent recipes. However, the datasets are not labeled and require
analysis of trends to determine which recipes were active and when the system operated in production.
Furthermore, two datasets, one from each company, are extracted and used as a reference target during
the tuning of the simulation. From this section and onward these companies and their respective
datasets will be referred to as A and B, and datasets A and B.

All datasets are extracted in a similar manner from the log files, using a developed Python script.
The sampling interval, sampling frequency, and date of production are entered as inputs. For both
datasets, a time period of 15 minutes is used, with a sampling frequency of 1 Hz. The datasets di↵er
in terms of recipe and process dynamics, which is explained further in later sections. However, for
now it is su�cient to describe the datasets in terms of their recipes. Dataset A operates at a cream
fat concentration of 38% and includes a setpoint drop to 37%. This dataset has a temperature of 40
degrees and a product fat concentration of 0.5%. Dataset B operates at a cream fat concentration of
40% and a temperature of 49 degrees. The product fat concentration is 1.4%. This dataset does not
include a setpoint change.
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5 Simulation Software

This section gives a more in-depth description of the used simulation software, the PLC and the virtual
machines. The simulation software is first described in a block diagram, to get general a comprehension
of how it works. The di↵erent programs are then described further.

5.1 Simulation Software

The simulation utilizes the same PLC-logic as the real-world process, but there are some di↵erences.
The simulation replaces sensor data with simulated parameters. These parameters are created during
a process that introduces three things:

1. Lag

2. Delay

3. Noise

The simulation can therefore be described as in Figure 4. The variables cream temperature and raw
milk flow are the main process parameters that are manually adjusted when tuning the simulation.
When declaring these values, a max amplitude and a max control signal are given. These control
signals are normalized into a span between 0 and 100 % and correspond to the strength of the variable,
which varies linearly with the control signal. If a control signal of 100 % is sent to the simulation,
the corresponding simulated parameter takes the max amplitude. These parameters, along with a few
others, are the simulation correspondents of sensor data in the real process and are simulated with
added lag, delay, and noise. Lag is modeled as a first-order filter, which captures the finite response
times often exhibited by sensors. Delay adds a pure time delay to represent delays in the process, and
noise is added to model random disturbances. The simulated parameters are sent as sensor inputs to
the PLC. There is also a feedback loop from the PLC to the simulation, which essentially describes
the control signals sent from the PLC to the simulation, which a↵ects how the simulated sensor data
should change in reaction to the controllers. These control signals are the position of the two valves in
the process regulators, describing the behavior of the system and a↵ecting the simulated parameters.

simulate process
Lag
Delay
Noise

PLC

Cream temperature

Flow of raw milk

Cream temperature

Flow of raw milk

Other sensor data

Feedback/Control signals

Figure 4: Block diagram describing the simulation software. Parameters are simulated with the addi-
tion of lag, delay and noise which then acts as sensor inputs to the PLC. The PLC sends the control
signals of the regulators as feedback back to the simulation, which a↵ects the next iteration of sensor
data being simulated.

5.1.1 Totally Integrated Automation Portal v18 (TIA Portal)

The Totally Integrated Automation Portal (TIA Portal) from Siemens enables access to a range of
digitalized automation services. It is used to program, configure and visualize automation systems.
The available PLC programming languages are Ladder Diagram (LD), Function Block Diagram (FBD),
and Structured Text (ST), according to the standard IEC 6113-3 [16]. In this thesis, only ST and FBD
have been used to tune the simulation. [17] The TIA Portal is connected to the PLC, (CPU 1516-3
PN/DP), which communicates with the HMI. An example view of TIA Portal can be seen in Figure
5, where the PLC modules and PROFINET devices are found to the right. The PLC programming
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is found in the middle bottom window and the tags are found in the middle upper window. The TIA
portal is used to introduce and enhance disturbances, and random noise.

Figure 5: Example view of the TIA Portal

5.1.2 Aveva InTouch HMI 2023

Aveva InTouch HMI is a HMI visualization software used to supervise, control and visualize industrial
processes in real time. For the purpose of this project, Aveva Intouch HMI 2023 is used to monitor
and change the integral time Ti. [18]

The process overview for the standardization unit is visualized in Figure 6. The process overview
allows to track the process values in real time.

Figure 6: Overview of the process in the HMI with real time updates of the process values.

Furthermore, it is possible to manually change the recipe configuration in the process. This is
shown in Figure 7. All types of combinations can be configured, and custom recipes may be created.
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A recipe change is also the phase during which the setpoint change is performed.

Figure 7: Recipe configuration used to introduce a setpoint change for the regulators.

Then it is possible to monitor, in real time, the outputs through a trend window, with up to
eight chosen tags, as seen in Figure 8. The trend monitor in the UI tracks the di↵erent values for
the system, and at this stage, oscillatory behavior can be identified by maintenance sta↵ or service
engineers, prompting an adjustment wherein the integral time is increased in an attempt to address
the instability.
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Figure 8: Trend monitor in the UI of some chosen tags, to track the performance of the system.

Another, earlier version of Aveva InTouch (Aveva InTouch 2017) is used for monitoring data from
Company B, but the configuration is the same.

5.2 Python

To analyze the data statistically, Microsoft Visual Studio and Python are utilized. There is no purpose
of the research to further describe this software and the code here; thus, for the interested reader, the
complete code is found in the appendix A.

5.3 Simulation Tags

As mentioned earlier in Section 2.4, the process parameters translate into a number of simulation
tags. For all the performed simulations from Company A the collected datasets include 57 tags
and for Company B the collected dataset includes 32 tags. These parameters consist of setpoints,
calculations and measurements from the control circuit, mentioned in 2.3. All the included parameters
vary dynamically with noise and changes in the system. An explanation of the seven most crucial
parameters, also used later to tune and monitor the simulation software, is included in Table 3. The
complete list of simulation tags for data retrieval from the logs of both companies is found in Appendix
B.

Tag Description
H40 Rawmilk Fat Value Fat content in the incoming raw milk
H40 Cream Fat Value Fat content in the separated cream stream
H40 Product MassFlow Value Mass flow rate of the final milk product
H40 Product Fat Value Fat content in the final milk product
H40 Cream MassFlow Value Mass flow rate of the cream stream
H40 Rawmilk Flow Value Flow rate of the incoming raw milk
H40 Cream Temp Value Temperature of the cream stream

Table 3: Simulation tags and corresponding descriptions.

However, some originally measured simulation tags are not included in the statistical analysis,
since they only represent incrementing values such as amount of cream produced over time, which only
contributes with an o↵set that might hide the desired process parameter variance. The exact number of
tags that can be collected depend on what software is used, and di↵ers between the datasets collected
from Company A and Company B.
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6 Method

This section presents the performed method for the aim of the project. The method roughly follows
the structure seen in Figure 9.

Data from Company A, B

Check data requirements Validate simulation with
Real-World data

Choose number of PC:s

Structure
test matrices and conduct tests

Analyze data
Develop theory for implementation

Figure 9: Simplified work flow of the methodology

6.1 Data Requirements

For Principal Component Analysis to be e�cient, a number of criteria must be met in accordance with
Section 3.5. To determine whether these criteria can be met, the datasets are evaluated according to
a few principles.

1. Amount of correlation in the dataset

2. How much variance that is explained by the first few PC:s

3. Autocorrelation

Furthermore, to reduce the risk of overfitting in PCA, that is, fitting to noise rather than structure,
10 observations per variable are taken with a sample interval of 1 second [9].

6.2 Simulation Validation

Due to the fact that the method is structured around the data acquired from simulations, the precision
of the simulation is crucial. To determine whether the macroscopical behavior of the process is inher-
ently similar between the simulation and the physical process, the data collected during simulation is
compared with real-world data acquired from Company A.

To be able to obtain an accurate comparison, the process parameters of the simulation during
steady-state operation are tuned to roughly match the same parameters in the dataset from Company
A. This tuning is mainly achieved by changing seven relevant parameters during simulations.

1. Raw milk fat

2. Product mass flow

3. Product fat

4. Cream fat
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5. Cream temperature

6. Raw milk flow

7. Cream mass flow

To be able to perform this validation and compare the data from Company A with simulated data
gathered from a system without introduced errors, it is assumed that the data from Company A do
not contain any significant volume error. This assumption is made after conducting an analysis on the
seven parameters mentioned above specifically looking for indications of a present volume error. The
most important indication for this purpose is oscillatory behavior.

Furthermore, the simulation is compared to the real process during operation in two modes.

1. Steady-state operation

2. Setpoint change

Steady-state operation is defined as a flow process in which the conditions of the process are constant
or remain within a small interval of the process setpoints at all times. During operation, there are no
manual changes to the setpoints of the process. To complement steady-state operation and describe
behavior that occurs between steady-states, setpoint changes are introduced. There are several ways of
introducing these changes, such as switching the recipe or manually changing the setpoint of regulator
1, but for this comparison, the sole method of choice will be switching the recipe. The exact setpoint
change included in the data to validate the simulation is a decrease in the cream fat concentration
from 38 % to 37%, similar to the setpoint change introduced in test matrix 1 which will be introduced
in more detail in Section 6.5.

6.3 Choosing the Number of Principal Components

To retain as much variation as possible while still eliminating redundancy in the data, a scree plot is
used to visualize the amount of variance captured in each component. Referring to Section 3.4, the
number of principal components will be determined by the amount of variance captured. Hence, the
scree plot in Figure 10 will be used to determine the minimum number of principal components that
captures the desired variance of the data, for which a good target is 85-90% [7]. The scree plot shows
the how much variance is explained by each principal component. In this case, a captured variance over
90% corresponds to three principal components for the data acquired from Company A and Company
B. However, for their simulated counterparts, there is a slight variation across the di↵erent test cases
regarding whether three or four PCs explain more than 90% of the variance, hence 4 PCs will be used
forward. The datasets described above as the simulated counterparts of the real-world data will be
explained further in the next section, but for now it is su�cient to know that they are referred to as
Reference data 1 and Reference data 2.

Figure 10: Scree plot for the Reference Data 1 to determine number of principal components. Here, 4
principal components corresponds to over 90% cumulated variance and will therefore be used onwards.

23



6.4 Structure of Tests

To be able to detect a di↵erence in behavior due to the volume discrepancy or the increased integral
time that this error usually results in, the study is comparative. To be certain that the datasets
analyzed during these comparisons are plausible to encounter in an industrial context, and therefore
have relevant configuration, the simulations will be tuned to resemble the data acquired from Company
A and B.

To perform this comparison, a baseline is required. In all tests, this will be inherently the same:
a simulation of a process without an introduced volume discrepancy or increased integral time. This
applies to all test iterations. As mentioned above, these baseline tests will be denoted as Reference
Data 1 for test matrix 1 and Reference Data 2 for test matrix 2.

For these tests, some predefined values are relevant. The volume discrepancy, �V , is a di↵erence
between the real volume of the process and the volume used by the PLC module during operation.
Table 4 describes the di↵erent values used during the di↵erent tests influenced by the data from
Company A, where a volume value of 12 and an integral time of 3 s represent a system without
introduced errors or slow process behavior. Table 5 describes the same, but for tests influenced by the
data of Company B.

Volume (l) �V Ti (s)

12 0 3, 5, 7.5
16 4 3, 5, 7.5, 10
20 8 3, 5, 7.5, 10
22 10 3, 5, 7.5, 10

Table 4: Volume and integral time values used during simulation for test set 1

Volume (l) �V Ti (s)

12 0 5, 7.5
14 2 5, 7.5, 12.5
16 4 5, 7.5, 12.5, 17.5
18 6 5, 7.5, 12.5, 17.5

Table 5: Volume and integral time values used during simulation for test set 2

To better resemble real-world conditions, where a volume deviation in high likelihood is masked by
slower process dynamics due to an increased integral time, this integral time is varied to simulate these
scenarios and evaluate the possibility of detecting the volume deviation in a system that is subject to
a latent deviation rather than an obvious deviation.

For all tests performed, the volume error is assumed to be positive, which means that no values
less than 12 l will be used to represent a volume error. This will be done to conduct e�cient tests, the
primary attribute of the volume deviation being the size of the discrepancy. Based on prior knowledge
shared by Tetra Pak, changing the sign of the volume deviation does not a↵ect the resulting behavior.
To put this into numbers, a volume configured 4 l too large is comparable to a volume configured 4 l
too small.

To achieve the best possible comparison between the reference data and the test data with the
purpose of detecting either of these introduced characteristics, the dataset used will include a setpoint
change. This setpoint change is introduced roughly at the same sample in each dataset, approximately
at the midpoint of the sampling interval. The size of the setpoint change for each test matrix is
explained in more detail in Section 6.5. A setpoint change is applied to observe the system’s stabilizing
behavior upon returning to the reference value, enabling di↵erentiation of the dynamic responses. The
setpoint change introduced refers to a change of setpoint of the first regulator in the cascade control
system, i.e. the controller regulating the fat concentration of the cream. This value can be accessed
and manipulated by changing recipes. Furthermore, the PCA-model is constructed on the reference
dataset, that is, the dataset containing no introduced errors or slow dynamics. For each simulation, the
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test dataset is projected onto the same principal components. The following enumerated list describes
each test after each simulation is performed and the datasets are collected.

1. PCA-model is constructed on the reference dataset.

2. The test dataset is projected onto the PCA model retained from the reference dataset.

3. Dimensionality reduction is visualized with score plots.

4. Hotelling’s T 2, Q residuals, and frequency analysis are computed on the principal components.

To evaluate the di↵erent methods of identification in a system during steady-state operation, a
number of datasets that do not contain setpoint changes are gathered as a complement. These steady-
state simulations are based on the same settings used during the tuning of test matrix 1.

The data is sampled with a one second interval, during a time period of 15 minutes resulting in
approximately 900 individual data samples.

6.5 Test Matrices

To streamline the simulation stage, a test matrix is created. This matrix describes each test, the
integral time of the first regulator, and the magnitude of the volume deviation which is the main focus
of detection. Since two iterations of tests are performed, in which the simulation is configured to
resemble the datasets from both companies, two test matrices are created.

Test �V (l) Ti (s)

Reference test 1 0 3
Test 2 4 3
Test 3 8 3
Test 4 0 5
Test 5 4 5
Test 6 8 5
Test 7 10 5
Test 8 0 7.5
Test 9 4 7.5
Test 10 8 7.5
Test 11 10 7.5
Test 12 0 10
Test 13 4 10
Test 14 8 10
Test 15 10 10

Table 6: Test matrix 1, tuned to resemble data
from Company A

Test �V (l) Ti (s)

Reference test 2 0 3
Test 2 2 5
Test 3 0 7.5
Test 4 2 7.5
Test 5 4 7.5
Test 6 6 7.5
Test 7 0 12.5
Test 8 2 12.5
Test 9 4 12.5
Test 10 6 12.5
Test 11 0 17.5
Test 12 2 17.5
Test 13 4 17.5
Test 14 6 17.5
Test 15 8 17.5

Table 7: Test matrix 2, tuned to resemble data
from Company B

The datasets collected from both companies are di↵erent in terms of many variables, which a↵ect
the behavior of the process. Tuning the simulation to resemble the data from Company B resulted
in the system being prone to instability at smaller volume deviations than when the simulation was
tuned to resemble the data from Company A. To account for this and still analyze a stable system,
smaller volume increments and larger increments of integral time are used in Text matrix 2. The
setpoint change introduced in all datasets di↵ers slightly between the two test matrices. For the tests
in Table 6 the setpoint of the first regulator is initially at 38 percent, and becomes 37 percent during
the change. For the tests in Table 7 in a similar manner, the setpoint drops from 40 percent to 39
percent.

6.6 Analysis of Data

The results obtained from the analysis of the di↵erent datasets, described in Section 6.4, are used to
establish theory on the possibility of implementing a method with the purpose of detecting this volume
deviation. This analysis takes into account several aspects.
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1. How e�ciently the di↵erent methods detect the volume deviation.

2. Accuracy, false positives, and true negatives during detection.

3. Limitations of the di↵erent methods.
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7 Results and Discussion

7.1 Data Requirements Evaluated

Following the criteria mentioned in Section 3.5 some evaluations were performed to ensure that the
data meet these specifications and are applicable to PCA.

Firstly, analyzing the trends of the seven manually tuned parameters, no indication of a significant
volume error is present in the data from Company A. Therefore, the assumption that the dataset from
Company A does not include a volume error can be made, and a validating comparison between the
simulation and the real-world data can be made.

For each dataset, the correlation matrix was calculated and used to determine the correlation of
each pair of variables. For the real-world dataset, the average correlation above or below a preset
threshold of 0.45 was 39 percent. The same value for a simulated dataset is 42 percent. Hence, this is
enough to perform an accurate analysis. [8]

(a) Simulated data from Reference Data 1 (b) Real-world data from Company A

Figure 11: Correlation matrix of the simulated data from Reference Data 1 and the real-world data
from Company A. Strong colors of red and blue indicates an enhanced linear relationship. Grey
indicates no present linear relationship.

For all datasets, around 90 percent of variation can be explained by the first 3-4 PC:s. This
includes both the real-world datasets and their simulated counterparts, which shows that e�cient
dimensionality reduction is possible within the data. The fact that both the process data from the
companies and the simulated process data exhibit roughly the same amount of explained variance in
the first 3-4 components also validates the claim that the simulation is, in this case, representative of
the real process. [5].

Since it is an industrial process, the samples are not independent of each other and autocorrelation
is therefore present in the dataset. Nevertheless, PCA is still considered applicable because PCA in
this case is used as pattern recognition and deviation recognition. [10] [11]

Moreover, it is worth reminding the reader that the data is simulated. Hence, there are no outliers
or missing data that need to be taken into account.

7.2 Validating the Simulation

Figures 12 and 13 describe steady-state operation, as well as a setpoint change for the dataset that
compares the simulation with the data received from Company A.
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Figure 12: Score plot showing a comparison between data acquired from Company A and data from
simulation with resembling process dynamics during steady-state operation.

Figure 13: Score plot showing a comparison between data acquired from Company A and data from
simulation with resembling process dynamics including a setpoint change where the cream fat concen-
tration dropped from 38 % to 37%.

It is clear from Figures 12 and 13 that macroscopical behavior is inherently the same between
simulation and real-world process. A rough estimation of the size of the clusters indicates that the
overlying structure of the process is captured in a similar manner for both the real-world data(blue)
and simulated data(orange). The real-world data exhibit non-linear characteristics, while the simu-
lated data exhibit linear relationships, which could indicate that the simulation is simplified to some
degree. [19] In addition to this, the data points are separated in the PCA space by a distance. This
phenomenon can be explained in several ways, such as variables not being completely equal through-
out each and every sample for both datasets, that is, the simulation not being tuned so that each and
every component of the process aligns in a perfect manner with the same data from the actual process.
Despite this, since the primary objective is to analyze the macroscopical behavior of the system and
capture the e↵ects of volume error on process dynamics as a whole rather than monitor small changes
in the values of features, the simulation is deemed accurate enough to represent the real-world process.

7.3 Principal Component Analysis

This section presents plots relevant to the Principal Component Analysis performed. The dimension-
ality reductions are presented as score plots, where the three components that retain most of the
variance are plotted against each other. The order of the score plots follows the structure described in
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the test matrices in Section 6.5. First, the results from the simulation tuned to resemble the data from
Company A are presented, and thereafter the results from the simulation tuned to resemble the data
from Company B are presented, and lastly the results from the steady-state analysis are presented.
The fourth PC did not provide any additional information, hence, it is not included in the presented
results.

(a) Reference test 1

(b) �V = 4l (c) �V = 8l.

Figure 14: Score plot showing the di↵erent principal components for Ti = 3 s

for (a) The Reference test, (b) Test 2 in comparison with Reference test 1, and (c) Test 3 in
comparison with Reference test 1. Furthermore, (c) shows a system becoming unstable due to the

volume deviation being too large.

(a) �V = 0l (b) �V = 4l

(c) �V = 8l (d) �V = 10l

Figure 15: Score plot showing the first three principal components for Ti = 5 s

for (a) Test 4 in comparison with Reference test 1, (b) Test 5 in comparison with Reference test 1,
(c) Test 6 in comparison with Reference test 1, and (d) Test 7 in comparison with Reference test 1.
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(a) �V = 0l (b) �V = 4l

(c) �V = 8l (d) �V = 10l

Figure 16: Score plot showing the first three principal components for Ti = 7.5 s

for (a) Test 8 in comparison with Reference test 1 , (b) Test 9 in comparison with Reference test 1,
(c) Test 10 in comparison with Reference test 1, and (d) Test 11 in comparison with Reference test 1.

(a) �V = 0l (b) �V = 4l

(c) �V = 8l (d) �V = 10l

Figure 17: Score plot showing the first three principal components for Ti = 10 s

for (a) Test 12 in comparison with Reference test 1, (b) Test 13 in comparison with Reference test 1,
(c) Test 14 in comparison with Reference test 1, and (d) Test 15 in comparison with Reference test 1.

Looking at the graphs, it is possible to identify a consequent trend from the di↵erent components.
To start with, the reference test in Figure 14a depicts two very narrow formations. Having a further
look, these formations tend to expand, i.e. the variance increases with a greater volume deviation. It
is very clear, compared to Figure 14b or Figure 15c, that a greater variance occurs between these
formations. However, it is harder to distinguish a greater variance in smaller volume deviations and
higher integral time. Looking at Figure 15b, Figure 16b and Figure 17b, there are hardly any
di↵erences in the shape of the formations. Test 3, i.e. Figure 14c, depicts a system where Ti is too
low to compensate for a larger volume deviation combined with a setpoint change and thus the system
starts to oscillate uncontrollably.

Changing focus, the second graph in the reference test in Figure 14a, i.e. PC2 plotted against
PC3, depicts a somewhat collected cloud, but there are two more concentrated collections. PC3 plotted
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against PC1 in Figure 14a presents a similar behavior, except for an increase in the distance between
the clusters of data points. The same pattern can be seen in these two subspaces, as for the first
subspace, that an increasing volume discrepancy consequently leads to a larger spread in the variance.
However, a volume discrepancy of �V = 4l is still di�cult to di↵erentiate. From these plots, it is
therefore possible to distinguish and conclude that a volume deviation leads to a change in the PC
subspaces.

Test matrix 2, or the simulation tuned to resemble the data from Company B, is presented below.

Figure 18: Reference test 2: �V = 0 l, Ti = 3 s

Figure 19: Score plot showing a comparison between Test 2 and Reference test 2. �V = 2 l, Ti = 5 s

(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 20: Score plot showing the three first principal components for Ti = 7.5 s

for (a) Test 3 in comparison with Reference test 2, (b) Test 4 in comparison with Reference test 2,
(c) Test 5 in comparison with Reference test 2, and (d) Test 6 in comparison with Reference test 2.
Furthermore, (d) shows a system becoming unstable due to the volume deviation being too large.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 21: Score plot showing the three first principal components for Ti = 12.5 s

for (a) Test 7 in comparison to Reference test 2, (b) Test 8 in comparison with Reference test 2, (c)
Test 9 in comparison with Reference test 2, and (d) Test 10 in comparison with Reference test 2.

Furthermore, (d) shows a system becoming unstable instantly due to the volume deviation being too
large. For this test no setpoint change was introduced due to the aforementioned circumstance.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

(e) �V = 8 l

Figure 22: Score plot showing the three first principal components for Ti = 17.5 s

for (a) Test 11 in comparison to Reference test 2, (b) Test 12 in comparison with Reference test 2,
(c) Test 13 in comparison with Reference test 2, (d) Test 14 in comparison with Reference test 2, and
(e) Test 15 in comparison with Reference test 2. Furthermore, (e) shows a system becoming unstable

instantly due to the volume deviation being too large. For this test no setpoint change was
introduced due to the aforementioned circumstance.

The result from Test Matrix 2 indicates a similar behavior as the previous test matrix. A larger
volume deviation together with an increased integral time is reflected with a wider spread in the
variance, in accordance with the test results obtained from Test Matrix 1, although the clouds in the
PCA subspaces look a little bit di↵erent due to another recipe configuration. The flow of raw milk is
significantly lower in Test Matrix 2, resulting in more tests becoming unstable faster, as seen in Figure
20d, and sometimes it is not even possible to initiate a setpoint change, which can be seen in Figure
21d. It is still di�cult to notice a small volume deviation.

Finally, the steady-state results are presented below.
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(a) Reference Data 1, �V = 0 l, Ti = 3 s (b) Test 7: �V = 10 l, Ti = 5 s

(c) Test 11: �V = 10 l, Ti = 7.5 s (d) Test 15: �V = 10 l, Ti = 15 s

Figure 23: Score plot showing the three first principal components during steady-state operation for
(a) Reference Data 1, (b) Test 7 in comparison with Reference Data 1, (c) Test 11 in comparison with
Reference Data 1, and (d) Test 15 in comparison with Reference Data 1.

It is possible to notice a di↵erence in the amount of variance when the volume error is introduced.
This di↵erence is greater at low integral time Ti. The di↵erence in variance decreases as the integral
time Ti increases, but a di↵erence is still possible to notice.

7.4 Residuals

The residuals are presented almost analogously to the figures in the above section. The results of the
data made to resemble Company A are presented. However, the data made to resemble Company B is
included in Appendix D. The focus here is to study the magnitude and duration of the peak following
the setpoint change. Since Hotelling’s T 2 did not yield any meaningful results, no e↵ort was made to
develop a corresponding threshold.

(a) �V = 4 l (b) �V = 8 l

Figure 24: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 3 s

for(a) Test 2 in comparison with Reference test 1 and (b) Test 3 in comparison with Reference test 1.
Furthermore, (b) shows a system becoming unstable due to a large volume error.

34



(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 25: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 5 s

for (a) Test 4 in comparison with Reference test 1, (b) Test 5 in comparison with Reference test 1,
(c) Test 6 in comparison with Reference test 1 and, (d) Test 7 in comparison with Reference test 1.

(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 26: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 7.5 s

for (a) Test 8 in comparison with Reference test 1, (b) Test 9 in comparison with Reference test 1,
(c) Test 10 in comparison with Reference test 1 and, (d) Test 11 in comparison with Reference test 1.
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(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 27: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 10 s

for (a) Test 12 in comparison with Reference test 1, (b) Test 13 in comparison with Reference test 1,
(c) Test 14 in comparison with Reference test 1 and, (d) Test 15 in comparison with Reference test 1.

All the residuals in Hotelling’s T 2 depict a clear deviation by the time the setpoint is changed,
similarly the setpoint change clearly violates the chosen threshold in the Q residuals. The time when
the setpoint change is introduced can vary slightly, and therefore there is sometimes a shift displacement
of the peaks in the reference dataset and the test datasets.

Although the peak is very obvious, Hotelling’s T 2 does not conclude any observable trend. Looking
at Figure 24a, the test peak is larger than the reference peak, contradictory, in Figure 25b with
the same volume deviation of �V = 4l, the peak is marginally smaller than the reference peak.
Furthermore, the peak in 25c, for the test data with an even higher volume discrepancy, is barely
noticeable. Continuing to look at the rest of the results from the other integral times, the peaks have
very irregular distributions.

However, the Q residuals present a more obvious trend. Initially, a higher Ti shrinks the peak,
but as the volume deviation increases, the peak also follows in magnitude, and it also depicts a wider
horizontal distribution. In Figures 26b and 26d, there is a clear di↵erence in magnitude and broadness.
The pattern is the same for the other test sets. However, it is still hard to distinguish a lower volume
deviation.

It is worth mentioning again that residuals only show discrepancy between the reference values and
the test values, but do not show what is really wrong. These peaks could therefore, in theory, be any
type of sudden and large deviation in the system.

In conclusion, it is not possible to notice a certain pattern among the T 2:s, but the Q residuals
show a more promising trend.

From the plots, no consistent results regarding Hotellings T 2 can be presented. The peaks vary in
magnitude randomly and do not follow any specific pattern. Regarding the Q residuals, there seems
to be a more noticeable pattern, in most cases the peak is increasing in magnitude with an increasing
volume deviation. Instability and oscillations are still very visible in the Q residuals.

The results of the steady-state operation comparison are presented below.
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(a) Test 5: �V = 10 l, Ti = 5 s (b) Test 11: �V = 10 l, Ti = 7.5 s

(c) Test 15: �V = 10 l, Ti = 10 s

Figure 28: Figures showing Hotellings T 2 (left) and Q residuals (right) during steady-state operation
for (a) Test 7 in comparison with Reference test 1, (b) Test 11 in comparison with Reference test 1,
(c) Test 15 in comparison with Reference test 1.

For the steady-state plots, no clear results are visible in neither the Hotelling’s T 2, nor the Q

residuals. The variations and deviations in both the reference data and the test data appear to follow
the same pattern.

7.5 Frequency Spectrum Analysis

This section presents results of the frequency spectrum analysis. The results are presented in the same
manner as in section 7.3, that is, first the reference test is displayed in 29a and the other tests will
follow, presented in increasing integral time and volume deviation.
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(a) Reference test 1

(b) �V = 4 l (c) �V = 8 l

Figure 29: Plots showing frequency analyses on the three first principal components for Ti = 3 s

for (a) Reference test 1, (b) Test 2 in comparison to Reference test 1 and, (c) Test 3 in comparison to
Reference test 1. Furthermore, (c) show a system unstable due to a large volume error.
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(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 30: Plots showing frequency analyses on the three first principal components for Ti = 5 s

for (a) Test 4 in comparison to Reference test 1, (b) Test 5 in comparison to Reference test 1, (c)
Test 6 in comparison to Reference test 1, and (d) Test 7 in comparison to Reference test 1.
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(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 31: Plots showing frequency analyses on the three first principal components for Ti = 7.5 s

for (a) Test 8 in comparison to Reference test 1, (b) Test 9 in comparison to Reference test 1, (c)
Test 10 in comparison to Reference test 1, and (d) Test 11 in comparison to Reference test 1.
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(a) �V = 0 l (b) �V = 4 l

(c) �V = 8 l (d) �V = 10 l

Figure 32: Plots showing frequency analyses on the three first principal components for Ti = 10 s

for (a) Test 12 in comparison to Reference test 1, (b) Test 13 in comparison to Reference test 1, (c)
Test 14 in comparison to Reference test 1, and (d) Test 15 in comparison to Reference test 1.

As expected, the frequency plots all capture a peak in the very beginning of the spectrum, which
is due to the slow dynamics in the process. The reference test in Figure 29a does not really reveal any
other frequency present, but upon closer examination, another frequency appears consequently in the
spectrum plots when there is an introduced volume deviation in the system. Having a closer look at
Figure 29b, a small peak is noticeable around 0.037 Hz. Inspecting Figure 29c, which depicts a system
that reached instability due to a too large volume deviation and a lack of compensation through an
increase in integral time, an interesting pattern is therefore recognized. The same peak is present, and
while it is located at the same frequency, the magnitude is significantly larger. This implies that the
peak at 0.037 Hz seems to appear as a result of an introduced volume error and that the magnitude
of this peak depends on the relative size of the error.

Evaluating the rest of the graphs, this is a recurring pattern. Figure 30a does not show any
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indication of a peak present around 0.04 Hz, while there clearly is a peak in Figure 30b, Figure 30c
and also in Figure 30d. Although the peak is smaller in 30b, it is still possible to notice it. This is the
same for the rest of the plots, where there is a volume deviation of �V = 4l, i.e. a peak is present but
significantly smaller.

It is also worth mentioning that the frequency peak is most noticeable in the third principal
component. In conclusion, since this is a recurring pattern, the frequency is most likely a disturbance
from the volume deviation. Figure 29c also confirms this, as the plot clearly shows where the volume
deviation is located.

(a) Reference test 2: �V = 0 l, Ti = 3 s (b) �V = 2 l, Ti = 5 s

Figure 33: Plots showing frequency analyses on the three first principal components for (a) Reference
test 2 and, (b) Test 2 in comparison to Reference test 2.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 34: Plots showing frequency analyses on the three first principal components for Ti = 7.5 s

for (a) Test 3 in comparison to Reference test 2, (b) Test 4 in comparison to Reference test 2, (c)
Test 5 in comparison to Reference test 2, and (d) Test 6 in comparison to Reference test 2.

Furthermore, (d) show a system unstable due to a large volume error.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 35: Plots showing frequency analyses on the three first principal components for Ti = 12.5 s

for (a) Test 7 in comparison to Reference test 2, (b) Test 8 in comparison to Reference test 2, (c)
Test 9 in comparison to Reference test 2, and (d) Test 10 in comparison to Reference test 2.

Furthermore, (d) show a system unstable due to a large volume error.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 36: Plots showing frequency analyses on the three first principal components for Ti = 17.5 s

for (a) Test 11 in comparison to Reference test 2, (b) Test 12 in comparison to Reference test 2, (c)
Test 13 in comparison to Reference test 2 (d) Test 14 in comparison to Reference test 2.
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Figure 37: Plots showing frequency analyses on the three first principal components for Test 15 in
comparison with Reference test 2. Ti = 17.5 sand �V = 8 l. Furthermore, this plot show an unstable
system due to large volume error.

Similarly to the other results, the frequency spectrum plots reveal the same pattern as with Test
Matrix 1, however, this time, the disturbance seems to be located around 0.023 Hz and most captured
in PC2. Smaller volume deviations are still hard to detect. Lastly, the results from the steady-state
operation are presented below.
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(a) Reference test 1: �V = 0 l, Ti = 3 s (b) Test 7: �V = 10, Ti = 5 s

(c) Test 11: �V = 10, Ti = 7.5 s (d) Test 15: �V = 10, Ti = 10 s

Figure 38: Plots showing frequency analyses on the first three principal components for (a) Reference
test 1, (b) Test 7, (c) Test 11 and, (d) Test 15.

From the results, it is clear that even though a setpoint change is absent, the deviation is still
present at the same frequency as with a setpoint change.

47



8 Evaluation of Detection Techniques

This section evaluates the di↵erent detection techniques in terms of advantages, limitations, accuracy,
validity, and reliability.

8.1 Principal Component Analysis

The Principal Component Analysis succeeded in reducing the dimensionality of the dataset to visualize
the variance present in the data. The error that is the target of the identification a↵ects the process
by introducing oscillations. These oscillations, when large enough, result in instability. Dynamics
such as oscillations will a↵ect the variance of the system, and therefore appear in the score plots.
This can be seen in, for example, Figure 14b where an introduced volume error increases the spread
of the data points. This trend can generally be identified for both test matrices. The purpose of
increasing the integral time is to account for a large volume error to prevent instability. This is a
scenario frequently appearing at industrial sites using the TPSU, where the volume error is configured
poorly during commissioning, which results in an increased integral time to get a stable system. This
increased integral time slows down the dynamics of the system. Figure 16c, which describes a system
with a large volume error and considerably high integral time, shows that this increased integral time
dampens the spread of the data points marginally while introducing slow process dynamics. These slow
process dynamics are seen mainly through the characteristics of the setpoint change, where the process
takes longer to stabilize around the new setpoint. Figure 17d displays the same scenario, except with
an even higher integral time. In this instance, the system is almost overcompensated, showing little
to no spread of data points and extremely slow system process dynamics.

These system dynamics that correlate with the volume error and a corresponding integral time can
be distinguished already in PCA-space, at least theoretically. However, implementing an algorithm
or a threshold that can identify the volume error in a system that is arbitrarily compensated integral
time-wise might prove to be di�cult due to limitations. A potential implementation could utilize a
predefined ”region” where an errorless system would be expected to confine all data points within,
while a system with a volume error would have a meaningful portion of the data points lying outside
the region. This threshold would resemble an ellipse in an analysis of a steady-state operation. For
these datasets, because a setpoint change is included to highlight the behaviors introduced by the
volume error, this region would look di↵erent and potentially resemble two ellipses depending on what
the score plot would look like during optimal operation. To detect the slow process dynamics, another
area of focus is the data clusters that ”travel” from the first setpoint to the second during the change.
The path these data points take is highly dependent on the integral time and stochasticity, since the
exact operating point where the setpoint was changed a↵ects where these data points start moving.
This can be seen by comparing Figure 21a and Figure 22a where the setpoint probably began at slightly
di↵erent stages of the process, resulting in di↵erent starting points in PCA-space.

To potentially account for the complexity mentioned lastly, a few PCA transformations were done
on a dataset without a setpoint change, i.e. a system operating at steady-state. Looking at 23b, it is
clear that the volume error can be distinguished due to the spread of the data points in the cluster.
In this comparison the test dataset contains a high volume error, and not su�cient compensation in
terms of increased integral time, which is not likely to appear in a real-world setting. More likely, the
volume error will be compensated for or even overcompensated for, as depicted in 23d. It is easy to
see that detecting the volume deviation in this figure is di�cult. Although there are data points that
could potentially be used for identification, the error is not as easy to identify visually as in the plots
containing a dataset with a setpoint change. However, this approach does eliminate the complexity
that revolves around the awkward shape of the data clusters when a setpoint change is present.

Another limitation a↵ecting a potential implementation lies in having enough information to estab-
lish a baseline that is robust enough to have accurate thresholds. Two di↵erent machines at di↵erent
sites might have di↵erent dimensions, which with high likelihood will a↵ect the size and shape of the
clusters. The same TPSU during operation with di↵erent active recipes will have a similar impact.
To account for this, the implementation would have to take into consideration the di↵erent setpoints
used during operation as well as di↵erent dimensions for each and every machine, which might be time
consuming to set up every time a new machine has to be evaluated.

When comparing Test Matrix 1 and Test Matrix 2, the behaviors highlighted previously appear
to be a general trend. The datasets di↵er slightly, which results in the PCA-transformation yielding
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di↵erent components. This explains why the shape and rotation of the data clusters might be di↵erent.
Inspecting Figures 14a and 18 that show the reference datasets from the two test matrices, it can be seen
that the clusters vary in size and orientation. This di↵erence highlights the complexity of the potential
general implementation and shows that minor changes in the process might a↵ect the visualization in
PCA-space enough to a↵ect the predefined threshold during this potential implementation.

However, it is important to note that the theoretical behavior described in this section can be seen
using both the simulations described in test matrix 1 and test matrix 2, which implies that this trend
is universal and applicable to a degree in all systems.

With all these factors taken into account, PCA appears to be of better use as a dimensionality
reduction technique or for ocular inspection of the process behavior.

8.2 Residuals

As briefly discussed earlier, Hotellings T 2-residual and Q residual exhibit di↵erent results. Although Q

residuals show a slight potential in identifying volume error, at least when the error is large, Hotellings
T 2 performs significantly worse at the same task. Both residuals measure the discrepancies between
each sample of the reference datasets and the test datasets and the transformed PCA models. This is a
potential limitation to these methods, since these residuals might not exhibit a consistent trend when
it comes to exclusively detect the volume error since other process characteristics or disturbances might
contribute to a sample not conforming to the PCA-model and therefore result in a high residual. It is
therefore easy to assume that these methods will have a high False Positive Rate (FPR) and complexity
in establishing a robust threshold.

However, it is worth discussing Q residuals further, as they exhibit a slightly more promising trend.
Inspecting Figure 26d, which shows a system with a high volume error and a moderately high integral
time, it can be seen that the amplitude during the setpoint change is large. Analyzing the width of
the peak corresponding to the setpoint change, it is also clear that a large volume error increases the
width in many cases. Comparing the aforementioned figure to Figure 26a showing a system with a
smaller volume error and the same integral time, these trends are easy to di↵erentiate. However, these
trends are still not consistent, as can be seen in Figure 25b where the reference data without volume
error produce a higher residual than the dataset with the introduced volume error. Analyzing the Q

residuals in test matrix 2 gives slightly di↵erent results. As explained earlier, this dataset di↵ers from
the dataset used to adjust the simulation during the tests in test matrix 1. These changes resulted
in the system being more prone to instability due to faster process dynamics, which also results in
the system reacting more to smaller changes. The Q residuals for these tests show a higher peak
during the setpoint change whenever a volume error is present in the system. Looking at Figure 45b,
which describes a small volume error and a slight integral time compensation, this is clearly seen. This
indicates an inconsistent method that will likely have a large variation in e�ciency when the process
characteristics change. A system that responds faster to changes will give identifications that are easier
to di↵erentiate, which will limit the use of the method in many applications.

Evaluating the simulations performed in steady-state yields similar results. Firstly, a notable
di↵erence between the residuals during a setpoint change and during steady-state is that the peak
appearing due to the setpoint change disappears. This results in the residuals becoming more uniform
as the large-magnitude peak that a↵ected the scale of the graph now does not exist, which seemingly
leads to better resolution. However, this improved resolution does not provide any apparent change in
how well the residuals detect the volume error. Hotelling’s T 2 still behaves unpredictably, providing no
reliable trend to distinguish the error. The Q residual performs better, showing slightly elevated peaks
when there is a volume error. This can be viewed in Figure 28a where a system with a high volume
error is shown. Resembling the results obtained from a residual analysis of the datasets containing a
setpoint change, the Q residuals seem to be able to distinguish that the volume error leads to some
samples not conforming to the PCA-model, but not consistently reproduce the same result, which is
problematic.

A potential implementation involving these residuals could be realized, but there are several lim-
itations that will a↵ect the behavior and applicability. Hotellings T 2 has been concluded, with all
results taken into account, to be a poor choice of method to identify this volume error and will not
be considered further. The Q residual shows a more promising trend and could be applicable to some
extent. There are, as mentioned, limitations that have to be taken into account, such as the e�ciency
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varying with the process dynamics, resulting in the method being more e�cient on systems with faster
dynamics.

8.3 Frequency Spectrum Analysis

Already during an initial inspection, frequency spectrum analysis appears to be the more promising
method to identify the volume deviation. As explained above, the main characteristic of the volume
deviation is an induced oscillation. The presence of this oscillatory behavior strongly indicates that a
frequency analysis is e�cient. For both test matrices, the general behavior described in Section 7.5 is
visible, with some minor di↵erences. The peak at which this oscillation appears is static throughout
all simulations for each respective test matrix, but varies in between the matrices. This is likely due
to changes in the process dynamics, such as the system responding faster to changes due to some
characteristics being altered. For test matrix 2, the flow of raw milk is significantly reduced. This
will result in the process reacting faster to changes, and therefore smaller increments of volume errors
leading to stronger oscillations. As explained previously, this faster process dynamic leads to the
frequency of the oscillation decreasing for all simulations in test matrix 2, which results in the volume
error-induced peak appearing at a lower frequency. This can be seen by comparing Figure 29c and
Figure 35d where both figures show an unstable system to highlight the placement of the respective
oscillatory frequencies.

This requires some knowledge of the process similar to the knowledge described for PCA. However,
this amount of knowledge is significantly less and is essentially only the frequency at which the oscil-
lations appear. Inspecting Figure 29b and Figure 31c it is confirmed that the oscillation induced by
the volume error appears at the same frequency, independently of the size of the volume error or the
chosen integral time. The other required knowledge would be to know the amplitude of the energy
content at this frequency for a system without a volume error so this could be compared with the
amplitude of the energy content in a system with a volume error.

Evaluating the flexibility of a potential application, the frequency analysis again displays superior-
ity, as the oscillations induced by the volume deviation, in contrast to being more latent in the PCA
score plots, are clearly visible during steady-state operation. This implies that detection methods
related to frequency analysis might not be limited to a dataset containing a setpoint change and might
be applicable in a more flexible manner.

As discussed with respect to PCA, a machine operating in steady-state without the introduction
of a setpoint change might hide the elements that are used for detection. For frequency analysis,
this is not the case. Inspecting Figures 30d and 38b showing a high volume error without su�ciently
compensating integral time and a high volume error in an overcompensated system, respectively, it is
clear to see that the frequency peak corresponding to the oscillation appears at the same frequency for
both cases. This is promising since it enables the use of frequency analysis in steady-state operation
and during setpoint changes. Comparing the aforementioned figures one could even claim that the
oscillations are easier to detect during a steady-state operation, which could simplify a potential
implementation.

A drawback of this analysis is that the peak corresponding to the oscillation can vary in magnitude.
For systems with small volume errors and high integral times, as in 36b, it is di�cult to visually
compare the peak at around 0.023 Hz with the reference dataset. However, this limitation can be
avoided in practice by implementing a detection threshold along with a band-pass filter of appropriate
bandwidth. The use of this filter originates from the need to isolate the frequency peak that is the
target of detection, which is e↵ectively done with a band-pass filter[20]. This isolation results in an
increased validity since frequency peaks appearing due to other deviations will be filtered out and
a potential false positive is avoided. This approach still requires extensive knowledge of the exact
frequency of the oscillation so that the bandwidths can be chosen both in an e�cient and robust
manner.

8.4 Accuracy

Detecting process behavior induced by volume error depends on many factors, which have been dis-
cussed in the previous sections. This complexity results in the implementation requiring a high accuracy
of detection.
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Exactly what is defined as a volume error is slightly arbitrary. What size does the volume error
have to be to a↵ect the system enough for a detection to be ”necessary” to perform? This is an aspect
that has to be taken into account when discussing the accuracy of a method, since the volume likely
never will be perfectly configured, which results in a small discrepancy almost always being present
in any system unless the exact volume is known. Therefore, discussions and conclusions drawn in this
section will be comparative between the methods and focus on the theoretical accuracy of the methods
at a large scale rather than trying to compare the accuracies of the di↵erent methods numerically for
di↵erent systems.

In all of the methods evaluated, a threshold will be used as a means of detection.
As mentioned earlier, PCA visualizes the behavior induced by the volume error as an increased

captured variance. To detect this, a region of appropriate shape could be created to detect when a
data point appears too far from the center of the cluster of data points. An implementation utilizing
this approach requires the computation of a distance metric such as the Euclidean distance to mea-
sure deviations from normal operation [21]. Getting an accurate threshold using PCA is a complex
problem, since the size and shape of the cloud will depend on the individual process. To establish a
universal region that works for all processes will therefore not give an accurate enough detection, and
as concluded earlier, PCA is seemingly a better fit for the purpose of dimensionality reduction and
visual analysis of individual process behavior than an accurate method of detection.

The threshold for both residuals would be implemented as a horizontal line that detects unwanted
behavior when the amplitude of the residual reaches the threshold. Hotellings T 2 is, as mentioned
earlier, not a reliable residual to use and will not give accurate detections. Q residuals are slightly
di↵erent and can for some systems exhibit an e�cient possibility of detecting the error due to a
system with faster process dynamics, such as the process at Company B, having residuals with higher
amplitudes than processes with slow dynamics, such as the process at Company A. This results in
the accuracy of the Q residual becoming situational and highly dependent on the process for which
the detection is configured, which lowers the potential accuracy for a universal threshold without
individual modifications. Both residuals are, as mentioned formerly, comparing individual samples to
the established PCA-model. Residuals such as Hotellings T 2 are highly sensitive to outliers [22], which
could lead to an implementation that detects other errors and cannot di↵erentiate between this error
and the volume error, resulting in a high false positive rate and lower accuracy.

The frequency spectrum analysis will, in a similar manner as the residuals, utilize a horizontal
threshold that is detected whenever the energy content at the frequency of the oscillations induced by
the volume error reaches this threshold. For this method, false positives can be avoided by using a
band-pass filter. This combination would allow the threshold to only detect threshold-breaches at the
desired frequency and therefore lower the risk of false positive detections.

For all of the methods discussed in this section, there is a possibility of missing a detection, i.e. a
false negative. The False Negative Rate (FNR) depends on how well the methods can detect smaller
volume deviations in highly compensated systems, since these are the scenarios where detection is the
most di�cult. For PCA this can be compared to Figure 17b which describes an overcompensated
system and a small volume error. Inspecting this score plot it is hard to visually detect that the error
is present, which implies that a threshold implementation likely would have low possibility of detection
for this case.

For the two residuals, the same principle applies. Analyzing Figure 27b, which shows the residuals
for the same system, it is clear that a detection of volume error is improbable. Both residuals show no
signs of a present error and would contribute with a false negative.

The frequency analysis for the same system is shown in Figure 32b. Analyzing the frequency plot
for component 3 knowing that the detection should be done at 0.037 Hz for this system indicates that
this method might be slightly superior at detecting volume errors even at more latent sizes since a
potential threshold together with a bandpass filter with appropriate bandwidth could be utilized to
detect the error. However, the accuracy of the frequency analysis will likely decrease with a decreasing
volume error and at some point give false negatives as well.

8.5 Validity

Upon evaluation of the results, it can be concluded that the volume discrepancy, in combination
with an increased integral time, influences all statistical analysis measures tested. However, there are
some important comments to make. While the PC subspaces demonstrates a larger variance due to
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increased deviations, the PCA is only able to conclude that there is a deviation, and not the reason
behind a deviation. To make any further assumptions based on a PCA, one needs to have more
extensive knowledge about the process. As mentioned before, it is the oscillations in the systems that
give rise to a change in the PC subspace, but this oscillation can potentially come from any type of
disturbance. An industrial process, such as the TPSU together with the hermetic separator, contains
several sources of error and stochastic disturbances, both man-made and machine-made. Therefore,
another disturbance might as well result in an oscillation that reflects the same behavior in a PC
subspace. More tests need to be conducted to acquire knowledge about di↵erent deviations in the
PC subspaces. Hence, the validity of the principal component analysis is reduced and it remains
uncertain whether it accurately captures the deviation intended to be measured. This holds true even
for Hotelling’s T 2 and the Q residuals. Both residuals are not selective and will likely exhibit behavior
similar to the induced characteristics of the volume error when a di↵erent disturbance or error is
present. Hotelling’s T 2 and the Q residuals are also sensitive to outliers. This creates complexity
when the task is to create a robust triggering mechanism, such as a threshold, which greatly decreases
the validity of these methods.

The frequency spectrum analysis exhibits a more promising result. As discussed earlier, the de-
viation seems to appear at the same frequency for all test cases in a test matrix, regardless of the
magnitude of the volume discrepancy and integral time. Hence, it is possible to conclude both that
there is a deviation and also what type of deviation it is due to its consistent oscillatory behavior. Al-
though the deviation seems to appear at di↵erent frequencies for di↵erent configurations, the spectrum
analysis reveals an enhanced performance of validity, in accurately capturing the targeted deviation.
However, it is entirely possible for other errors to cause oscillations at the same frequency as the volume
deviation, and thus full validity can be achieved by introducing other sources of error and evaluating
the results in the frequency analysis.

8.6 Reliability

For a test result to have high reliability, the results should be the same in consecutive measurements,
regardless of the executor. Due to the several di↵erent recipe configurations available in the TPSU,
reliability is crucial. Extensive conclusions about reliability in this Master’s thesis are di�cult to
draw, since only two di↵erent configurations have been tested. However, these two test matrices
indicate similar behavior in all the cases. Furthermore, individual tests in the PC subspaces and in
the frequency plots exhibit the same pattern in the repeated tests, both with a present and absent
setpoint change. Despite exhibiting the same pattern, some di↵erences are evident in the frequency
spectrum analysis. The peak of where the frequency of the deviation appears varies from test to test.
As can be seen in Figure 30, the peak appears at approximately 0.037 Hz, while in the peak in Figure
29 it seems to be closer to 0.04 Hz. This is likely due to some changed dynamics in the system when
increasing the volume discrepancy together with the integral time. But, at least for the simulations
because of their somewhat deterministic behavior, the same tests will depict the same results in terms
of data collection and sampling for the same configuration. Since the peaks also only vary within
a very narrow and limited interval for each di↵erent test scenario, it is still somehow repeated and,
therefore, still consistent in terms of reliability.

With regard to Hotelling’s T 2 and Q residuals, the results are di↵erent. As already mentioned
earlier, repeated tests do not show a perfectly consistent trend in either of them. There are possibilities
to in some cases detect a repeated pattern within Hotelling’s T 2 and in the Q residuals, but not with
the same certainty as in the PC subspaces and in the frequency spectrum plots. Thus, the reliability
of these residuals remains reduced for these statistical evaluations. Hotelling’s T 2 is a↵ected by the
dimensionality of the data, which results in this residual becoming less reliable for the purpose of fault
detection. [23]

While the result of reliability is promising for the simulations, it is worth mentioning that no
repeated tests have been executed on the real-world data and, thus, it can not with certainly be
said that there is a high reliability generally in the system. A real-world system is of a highly non-
deterministic characteristic and the same configurations might yield other data samples and a very
di↵erent response, due to hidden internal and external disturbances. This is something that needs to
be evaluated for future work, but the two test matrices reveal a promising trend.
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8.7 Sources of Error

During validation of the accuracy of the simulation, some parameters were adjusted to try to resemble
the real-world data acquired from Company A, as best as possible. In the simulation software, only
a few trends could be measured, which resulted in a limited view of the attributes of the simulated
dataset. However, prior knowledge about the process, acquired from resources at Tetra Pak led to
the conclusion that this was not of major importance, since the parameters that were tuned, together
with the recipe, change the process dynamics entirely. However, it is worth mentioning that even
small di↵erences between the same features in the datasets could have an impact on the PCA space.
This could be seen in Section 7.2, when the data clusters from the simulation and the real-world data
were separated by a distance. Only being able to visually confirm the tuning of a small portion of the
features might result in some characteristics of certain features being overlooked, which can a↵ect the
results.

Another source of error worth mentioning is related to data collection. For all tests performed,
the sampling frequency is 1 Hz. The process in question is, as mentioned, an industrial process
where changes and fluctuations are expected to occur over a longer time span. It is entirely possible
that testing lower sample frequencies would result in better results, as more of the process dynamics
might be captured if the sampling interval is increased because the system exhibiting relatively slow
dynamics. Unfortunately, to make the process of simulation and data gathering e�cient and not overly
time-consuming, a sampling frequency of 1 Hz was used during these tests.

There are also di�culties in mimicking the exact values and behavior of a system for the variables
that were measured and displayed as a trend. Simulation softwares are often simplified in terms of
underlying structures such as noise. Industrial processes often exhibit non-linear behaviors that might
not be captured to a full extent by a simulation, which might result in di↵erences. Manually tuning
parameters to become as similar as possible to a specific value proved to be time consuming. Due
to time constraints some minor di↵erences between variables might have been overlooked and could
be optimized, but since the simulation su�ciently represented the real-world system dynamics this
optimization was not carried out.

In the field of engineering, simulation software is often simplified to provide useful insight to engi-
neers about complex problems[24]. A simplification of the simulation model could lead to a decrease
in accuracy. Because the method is based solely on simulations, with some influence from real-world
data, the results might be slightly idealized. A simulation is rarely as stochastic and random as a
real-world process, even though the simulation software uses the same PLC and control logic, but with
some simulated variables. The resulting theory does not take into account any stochastic events that
might occur in an industrial setting and focuses solely on the volume deviation.

All the methods used to analyze the datasets focus solely on the detection of a volume deviation.
Due to the fact that no other errors are in focus, the e↵ects of external errors are not taken into
account. Industrial processes are generally not optimal, and errors and disturbances will be present.
Some of the methods utilized in this thesis, such as both Hotellings T 2 and the Q residual, are highly
sensitive to the presence of outliers and other deviations from the PCA model on which the residuals
are based. This implies that other errors or disturbances might be detected as a false positive, as
explained earlier. Since no other errors or disturbances are taken into account, the results gathered
from the simulations might not be fully representative of a real-world system, since a simulation is
often simplified and lacks some of the disturbances that are commonly present in an industrial process.
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9 Potential Implementation

To improve and automate the process, a real-time implementation is beneficial. The implementation
would help a machine commissioner, or a machine operator, without su�cient knowledge to tune
the settings in the TPSU more accurately and, hence, confine to a smaller margin around the set
work point, improving the e�ciency and reducing the amount of required resources in dairy milk and
cream fat in-line standardization. This section, therefore, presents proposals for a potential future
implementation, taking into account the discovered findings and the existing limitations of the system.
The section will evaluate potential advantages and drawbacks with di↵erent scenarios, and is intended
to serve as a guiding framework, rather than a precise solution.

9.1 Choice of Detection Technique

To construct an e�cient implementation, a suitable choice of method has to be made. Four di↵erent
ways of detecting volume errors have been discussed and evaluated, and each method has di↵erent
strengths and weaknesses. These strengths and weaknesses have been discussed previously and will be
used as a theoretical foundation to motivate arguments about which method is the most e�cient to
implement.

Principal Component Analysis provides a visualization of the behavior induced by the volume
error but lacks in other aspects such as accuracy and validity. An implementation utilizing PCA as
the means of detection brings complexity, as each implementation must be individually modified for
process di↵erences, recipe changes, and potentially real-world process dynamics not perfectly modeled
in the simulation. It is therefore, as mentioned above, suggested that PCA is used as a dimensionality
reduction technique rather than a fault detection method based on elliptic boundaries around data
clusters in scree plots.

Hotelling’s T 2 is already, at first glance, easy to dismiss as a method suited for this purpose. In
most of the tests performed, the residual exhibits minimal potential to detect the volume error. The
method lacks reliability, accuracy, and validity and is due to these factors being considered to be the
worst choice out of all methods.

The Q residual is the superior of the two residuals, displaying a more prominent trend when de-
tectability is a possibility. This method exhibits situational accuracy, but lacks validity and reliability.

Frequency Spectrum Analysis is in all cases seemingly superior. Of all the methods, FSA exhibits
the most promising characteristics in terms of accuracy, validity, and reliability.

This leads to the method of choice being the FSA. Frequency Spectrum Analysis provides the
highest possibility of detecting the volume error while being the most flexible method in terms of
applicability. As observed during steady-state tests, FSA can seemingly detect the volume deviation
in systems without the presence of a setpoint change. This hypothesis was established in the later
stages of the thesis, resulting in a little time invested analyzing steady-state operations. However, the
possibility of not needing a setpoint change in an implementation significantly simplifies the problem
and should be investigated further. PCA will be used as a dimensionality reduction technique in a
manner similar to that used during the tests described in this thesis.

9.2 Limitations in Implementation

Implementing a software to detect volume error brings complexity. All evaluated methods have di↵erent
limitations and strengths that will a↵ect the performance of the implementation.

9.2.1 Variance Between Processes

The TPSU is applicable in a variety of processes, all with di↵erent characteristics. Due to the fact
that all the methods evaluated are a↵ected by di↵erent process characteristics and di↵erent operational
setpoints, such as recipes, individual modifications are likely needed to maximize accuracy, reliability,
and validity. Comparing the results of test matrix 1 with test matrix 2, where the processes di↵er only
in terms of a small number of variables and a recipe change, it is clear that minor di↵erences a↵ect
detection e�ciency, regardless of the choice of method. This limitation likely results in the need for a
controlled environment where the detection can be run knowing how the system would behave under
normal circumstances. However, this invokes the need for additional knowledge regarding the behavior
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of the process as well as the detectability of the di↵erent methods at di↵erent setpoint operations and
recipes.

9.2.2 Data Limitations

There are limitations to data collection that must be taken into account. The dataset to be analyzed
must be sampled at a rate that conforms to the Nyquist Theorem explained in 21. Another limitation
lies in aliasing, which can a↵ect the results of the frequency analysis. This can be avoided by imple-
menting an anti-aliasing filter before computing the DFTs [15]. During the data collection performed
in this project, a low-pass filter with a bandwidth lower than the Nyquist frequency is used to avoid
aliasing.

9.3 General Implementation

A general implementation includes real-time measurements, which trigger an alarm when the deter-
mined threshold is violated. The general implementation would cover all the di↵erent recipe con-
figurations, and thus have knowledge about the various appearances of the deviations. The general
implementation would also be able to change dynamically in case there is a recipe change while running.
A block diagram of the general implementation is seen in Figure 39.

While this implementation yields a more non-static behavior, some disadvantages exist within the
confined definition of a general implementation. First and foremost, this scenario would require a
thorough investigation of all the di↵erent recipe configurations, together with collecting and storing
all di↵erent PC subplots magnitudes and the frequency where the deviation occurs. These will then
be used to individually define unique thresholds for the di↵erent recipes.

There is also a risk for false positives to appear while the machine is running, leading to an
unnecessary stop in production for tuning attempts. Moreover, the simulation data also deviates
in magnitude, as seen in Section 7.2, from the real-world data, further complicating the process of
collecting and adjusting the various thresholds. Perhaps already implicitly understood, developing a
general implementation algorithm requires significant e↵ort and a huge data acquisition.

Another significant limitation to this method is the fact that the majority of tests conducted in this
thesis involve a setpoint change. A general implementation should preferably detect a volume deviation
at steady-state, since no setpoint changes likely will be present during operation. Therefore, a crucial
prerequisite for this implementation is that Frequency Spectrum Analysis, which is the detection
technique that displays the most flexibility and accuracy, can detect a volume deviation at steady-
state operation. For this to be evaluated, further analysis must be performed, which is explained in
Section 10.2.

The question also arises, if a general implementation is needed, as the volume configuration gen-
erally appears as a one-time occurrence during commissioning. Therefore, this seems like a redundant
implementation since there will most likely not appear any volume deviation within a running process,
and will solely be a costly alternative for an implementation.

Users Input

Choice of recipe Threshold applies Machine running Violates
threshold?

Alarm triggeredVolume adjustment

Yes

No

Figure 39: Block diagram of a General Implementation
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9.4 Test Case Implementation

As explained earlier, the complexity that arises from the fact that the system behaves di↵erently
at di↵erent setpoints, using di↵erent recipes and using di↵erent machines is problematic and requires
extensive knowledge of di↵erent scenarios of di↵erent machines. A proposed solution for this complexity
is to implement a test case. This test case will be run during commissioning in a controlled environment
where the volume error is detected in an e�cient manner. The analysis performed on data from
Company A and Company B is essentially representative of a specific recipe and a specific setpoint
change for each matrix. Creating a controlled environment where the frequency of the oscillation
induced by the volume error is known drastically improves the chances of detection. A controlled
environment essentially means that the test case implementation should have a preset recipe that works
universally for all machines. This implementation structure is recommended because it significantly
reduces the amount of knowledge required to detect volume errors. Due to the fact that the origin of
the volume error is solely poor configuration during commissioning, running a test case implementation
once in a controlled environment is su�cient. This test implementation should also be executed after
all sorts of maintenance that might a↵ect the actual volume that contributes to the volume error, such
as changing the dimensions of the pipe transporting the cream. Process setups often have predesigned
characteristics, such as a tolerance interval of raw milk mass flow, which a↵ects the process dynamics.
Looking at the FSAs performed in this thesis, the process dynamics between the process in Company
A and the process in Company B di↵er significantly in terms of this mass flow. This drastically a↵ects
how much the volume error a↵ects the system, as well as the frequency at which the oscillation occurs.

This solution operates under the assumption that the system the implementation is created for
resembles one of the systems used in the test matrices and therefore that the simulation accurately
enough represents the real-world process, where the frequency at which the oscillation occurs is known
and can be assumed to have a similar location for the new system being commissioned. This solution
also operates under the assumption that the simulation adequately represents the real-world process.
This validation requires some additional research and is described further in Section 10.2 and Appendix
C.

The proposed solution is described in a block diagram, seen in Figure 40.

Machine
commissioning

Set volume
value in PLC

Test button
with pre-
defined

configuration

Violates
threshold?

Run
No

Yes

Figure 40: Block diagram of Test Case Alternative 1

However, it is strongly recommended to validate the location of the frequency of the oscillation
induced by the volume error for the two systems evaluated in this thesis. As explained in Section
8.7, it is di�cult to adjust the simulation to perfectly resemble the real-world process, which might
result in some di↵erences in the PCA space and lead to the frequency of the oscillation being slightly
di↵erent for the two real systems than the frequency of the oscillation for their simulated counterparts.
Therefore, to take this into account, it might be beneficial to validate these claims using the secondary
method presented below.

If the system in question does not resemble one of the systems used in this project, due to factors
such as the system being designed for conditions that di↵er much from the conditions present in the
two systems analyzed in this project, a second solution is presented, where the sole di↵erence is that for
these systems a significant volume error is introduced in order to locate the frequency of the oscillation
before commencing the test sequence. The second solution is presented in the block schematic, seen
in Figure 41

The additional step introduced in Figure 41 marked yellow, is described in the block diagram in
Figure 42.

The determination of which of these methods to be used during the commissioning of a new system
depends on how much the system resembles the two processes evaluated in this project. This similarity
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Figure 41: Block diagram of Test Case Alternative 2

Introduce high
volume error

Test button
with pre-
defined

configuration

Locate
frequency

Complete
Yes

Figure 42: Block diagram describing the additional step added in Test Case Alternative 2 to locate
the frequency at which the oscillations induced by the volume occur.

is dependent on the process dynamics of each system, and determining whether the system resembles
the commissioned system su�ciently is left to a professional possessing advanced knowledge of the
process. However, to potentially maximize accuracy and simplify the detection process in future
machines identical to the one being commissioned, the second test case solution is superior. Using
the second solution is also advantageous in a long-term application, since every execution gathers new
information regarding the location of the oscillation for a di↵erent system.

Knowing the rough location of the peak of the oscillation is crucial for detection and will optimally
be combined with a band-pass filter of appropriate bandwidth so that e�cient isolation of this peak
can be acquired.

Furthermore, determining the exact thresholds that should be used from case to case is a di↵erent
question and comes with complexity. The degree to which the oscillations induced by the volume
deviations stand out in a dataset collected from a real-world process has yet to be determined and will
have to be evaluated on a new set of data. However, it is likely that the amplitude of the peak of the
error-induced oscillation is mainly a↵ected by the size of the volume error rather than by di↵erences
in process dynamics. The data needed is explained in more detail in Appendix C.

9.5 Implementation in PLC or HMI

This section will briefly describe the suggested implementation in terms of the general structure and
where this structure could be implemented. Implementing these proposed solutions is similar in terms
of where the implementation would be constructed. Both solutions require a surveillance system and
a system that performs the analysis and collects the data. The analysis might require a large portion
of computer memory and should therefore be implemented on the HMI-computer. The surveillance
system must be implemented in the PLC to enable the possibility of canceling the analysis if an
unforeseen event occurs. Implementing this system in the PLC also helps taking scheduled events into
account, such as a separator cleaning that occurs at a preset interval and heavily disrupts the process.

The general implementation is as mentioned more complex than the test case scenario, and would
require more knowledge about the process as well as experience from the operator. The analysis must
collect data without the influence of the aforementioned occurrences, which requires that the operator
has su�cient knowledge about these events and can determine when the analysis should be run.

The test case scenario is less complex and can be implemented in a more simple manner. The PLC
should preferably be used to program a state machine of a test sequence of a preset interval. Figure 40
describes the sequence that the operator would use. The red circle describing the test button would
be the main activator of the analysis and is pressed by the operator. Pressing this button should
activate a pre-programmed sequence in the PLC with a preset recipe, sampling interval, and sampling
frequency. After the sampling period has ended, the analysis is performed on the HMI computer.
Technical aspects such as data retrieval will not be discussed further than mentioning that it would be
performed similar to how it was performed during this project. The rest of the blocks in this diagram
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are done by the operator, such as manually setting the volume value before executing the analysis and
reconfiguring the volume value if the test results show a volume error.

Figure 41 describes the second proposed test case implementation which includes an additional step
in the form of introduction of a high volume error to identify the frequency of the oscillation. This
introduction of a high volume error could be preprogrammed in the PLC and executed with the press
of a button by the operator in the HMI in a manner similar to activation of the main analysis test
sequence described above.

For both of these sequences, it is crucial that no external disturbances or scheduled events a↵ect the
analysis. Therefore, when these sequences are active, the PLC should cancel the analysis and notify
when an unforeseen disturbance occurs, such as sensor failure or circulation in the process. The PLC
should also notify the operator if the operator tries to execute the test sequence with an event such
as a separator shoot, which is a periodic event that heavily impacts the process conditions, scheduled
during the time allocated for the test sequence.

In summary, the test case implementation would consist of two di↵erent sequences, one of which
is the main analysis of the system to identify the potential presence of a volume error. This sequence
should have a preset time allocated for data retrieval and to analyze the data after the interval ends.
The analysis should be performed on the HMI computer. This sequence is the only run sequence on
systems where the frequency of the oscillation induced by the volume error is known. The second
sequence is inherently the same as the first sequence, but with an additional step. This step is an
introduction of a high enough volume error to identify the frequency at which the oscillation appears.
The analysis part of the sequence is identical to the main test sequence, with the exception of that the
time span when data is collected can be shorter and still give a visible volume error if it is configured
high enough. This sequence should be run separately before the main test sequence on new machines
where a similar test has not yet been performed to gain knowledge of the position of the volume-induced
frequency oscillation.

As a final note, it could be beneficial to always run the second implementation presented in Figure
41 because the known location of the frequency of the oscillation might be slightly a↵ected by non-
ideal simulation adjustments. This would simply imply that running the sequence to determine the
frequency of the oscillation is beneficial to increasing the validity of the detection for all systems.

9.6 Choice of Implementation Method

Two di↵erent implementations have been proposed in this thesis. The general implementation is
dynamic and operates in real time during production. If unlimited access to data and the ability to
construct an optimal implementation were possible, the general implementation would be superior,
since it would detect the volume deviation in real time during production, with the possibility of
being extended to take into account di↵erent recipes and processes with di↵erent capacities. This
dynamic model could even be extended to cover other disturbances if these are detectable using the
same method. However, this implementation is both costly and time ine�cient if the sole purpose of
the implementation is to identify only the volume deviation. Complexity arises because the non-static
conditions a general implementation would require to enable analysis in real time during operation
together with a static detection method like PCA complicates the distinction between false positives
detected during operation and the actual detection target[25]. Because of this, the implementation
is heavily based on the frequency spectrum analysis being able to detect the volume deviation in
steady-state operation, which limits the flexibility of the method.

The test case implementation is designed as a test sequence, where the detection is performed
in a controlled environment under conditions more optimal for the purpose of detecting the volume
deviation. This implementation does not rely on FSA being able to operate on a steady-state pro-
duction, since a setpoint change can be included in this test sequence. This implementation also
requires additional information and data, but the extent of these is significantly smaller. Since the
volume deviation essentially only requires to be corrected once, unless any physical change is done to
a process, a test sequence like the one proposed is optimal. This implementation also removes some
complexity regarding real-time identification, since the test sequence is executed, and afterwards the
data collected during a preset sampling interval is analyzed. This methodology removes the need of
constantly accessing new data and re-executing the detection technique.

As mentioned earlier, the test sequence implementation would consist of two implemented se-
quences, one detecting the volume error in a system and one using the same analysis to identify the
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location at which the oscillation induced by the volume error appears. These implementations require
a small amount of process knowledge from the operator, rely on preset settings to conduct the analysis,
and are easily executed through the HMI by the operator.

Taking everything into account, it is concluded that the test case implementation is superior in
terms of flexibility, required data resources, and time e�ciency. In high probability, it is preferable
to opt for the second test case implementation described in Figures 41 and 42 since this increases
detection accuracy in general.
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10 Conclusions and Future Work

10.1 Conclusions

To preface this conclusion, prior to this Master’s thesis, no similar, or statistical research on the data
from the TPSU had previously been carried out. Beginning this Master’s Thesis without preceding
foundations, investigations of the data had to be done. The multivariate data analysis yielded promis-
ing results, as a moderate correlation between variables was proven, both in real-world data and in
simulation data. Furthermore, this indicates that the data obtained from the TPSU is well suited for
the application of a principal component analysis. Therefore, it can be concluded that the collected
data is suitable for further principal component analyzes by Tetra Pak, if there is a need for it.

Principal component analysis is common in industrial applications, but in many cases it is not
enough to locate what is wrong in the process. Therefore, a complementary frequency spectrum anal-
ysis was carried out, together with a Hotelling’s T 2 and a Q residual analysis. The di↵erent statistical
analyzes yielded di↵erent results, and the di↵erent advantages along with the disadvantages have been
rigorously discussed in the above sections. Reaching a conclusion from the preceding discussions,
Hotelling’s T 2 and the Q residuals are not much of a help when trying to detect an implicit volume
deviation. Although the Q residuals are slightly better than Hotelling’s T 2, there are no advantages
in proceeding with these strategies.

Instead, the best findings lie in the principal component score plots and in the frequency spectrum
analysis. The PC subspaces depicted a great response to di↵erent volume and integral time changes.
However, it is still unclear whether other faults can result in a similar pattern and there is no way
to tell di↵erent faults apart in a PC subspace. Therefore, the frequency spectrum analysis yields
superior results when one has to pick a single advantageous method. The frequency spectrum analysis
managed to locate the deviation at a certain frequency very precisely, which minimizes the risk of
confusing di↵erent disturbances. Although this seems to be the single best choice to opt for, this
Master’s Thesis arrives at the conclusion that the best choice probably is to combine the PC sub-
spaces, together with the frequency component analysis, to increase the chance of the detecting the
fault, and to minimize the risk of false positives.

Proceeding with the statistical methods of choice, the preferable method of implementation is the
test case alternative, which remains superior in terms of cost, data, and time e�ciency. The general
implementation requires a relatively high workload of data collection and implementation, in relation
to its advantages. Also, because volume deviations are most likely to appear during the commissioning
phase, this further motivates the lack of necessity of a general implementation. The best option
to implement the test case alternative is furthermore a pre-programmed test sequence in the PLC,
combined with analysis executed in the HMI. Finally, a foundation has been established in order to
improve the e�ciency of the TPSU, but more needs to be done to manage a successful implementation.
Hence, the research that needs to continue this Master’s thesis will be described below.

10.2 Future Work

This study provides insight in whether the detection techniques analyzed can detect the volume de-
viation, as well as the feasibility for a future implementation. However, to fully accomplish this, this
topic requires further research. This section briefly discusses complexities that must be further tested
to validate and improve the theoretical findings of this study. To perform these tests, multiple specific
datasets must be collected. Information regarding this data collection and how the tests should be
performed, is left for Tetra Pak personnel in Appendix C.

Due to the fact that all tests performed are based solely on simulations, after assuming that the
simulation represents a real-world system su�ciently, there is a need to validate this assumption.
Because no data describing a system with exact knowledge of both the presence and size of a volume
error exist, this validation has to be performed in the near future, after collecting the required data.
To e↵ectively compare a real-world system with the simulation and validate the theory in which these
tests resulted, similar test matrices should be constructed on data acquired from a real process. This
will require a controlled environment where volume errors and integral times can be manually adjusted
to resemble the di↵erent tests described in Table 6 and Table 7.

As mentioned in previous sections, to structure a general implementation that is applicable in real
time during process operation, it is optimal that no setpoint change is required to detect the volume
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deviation, since no setpoint changes will be present at steady-state operation. FSA shows potential to
accomplish this, but needs further evaluation to establish certainty.

A source of error that was mentioned previously is that no other errors than the volume error have
been analyzed. To improve the accuracy of the detection, knowledge regarding commonly occurring
errors and disturbances should be analyzed using the same methods, so that the implementation can
di↵erentiate between the two and give more reliable detections. There is also a possibility that di↵erent
errors or disturbances can induce process behavior similar to the volume error, which might limit the
use of some methods discussed.
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A Appendix

For the code described below, the dataset on which the model is based is denoted as correct. This
is during the validation of the simulation the real-world data from Company A, and for the tests
performed in this study the two Reference tests. The dataset denoted as error in the code is the
simulated dataset that is compared to the above.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from scipy.fft import fft, fftfreq
from scipy.signal import windows, butter, filtfilt
from scipy import signal

def mean_square_error(data1, data2):
mse = np.mean(np.square(data1 - data2))
return mse

# Load and preprocess the reference data
# General file location
df_correct = pd.read_csv(r"FILE_LOCATION\DOCUMENT_NAME...", delimiter=’;’)
df_correct = df_correct.applymap(lambda x: x.strip() if isinstance(x, str) else x)
scaler = StandardScaler()
scaled_data_correct = scaler.fit_transform(df_correct)

# Load and preprocess the test data
# General file location
df_error = pd.read_csv(r"FILE_LOCATION\DOCUMENT_NAME...", delimiter=’;’)
df_error = df_error.applymap(lambda x: x.strip() if isinstance(x, str) else x)
scaled_data_error = scaler.transform(df_error)

# Perform PCA
n_components = 4
pca = PCA(n_components=n_components)
pca.fit(scaled_data_correct)
T_correct = pca.transform(scaled_data_correct)
Q_correct = scaled_data_correct - T_correct.dot(pca.components_)

T_error = pca.transform(scaled_data_error)
Q_error = scaled_data_error - T_error.dot(pca.components_)

# Scree plot
plt.figure(figsize=(8, 6))
plt.plot(range(1, len(pca.explained_variance_ratio_) + 1), pca.explained_variance_ratio_,
marker=’o’, label=’Explained Variance’)
plt.title(’Explained Variance Ratio by Principal Component’)
plt.xlabel(’Principal Component’)
plt.ylabel(’Variance Explained’)
plt.legend()
plt.grid(True)
plt.show()

# Scores Plots
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
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axes[0].scatter(T_correct[:, 0], T_correct[:, 1], alpha=0.7, label=’Reference Data 1’)
axes[0].scatter(T_error[:, 0], T_error[:, 1], alpha=0.7, label=’Test Data’, marker=’x’)
axes[0].set_xlabel(’PC1’)
axes[0].set_ylabel(’PC2’)
axes[0].set_title(’PC1 vs PC2’)
axes[0].legend()
axes[0].grid(True)

axes[1].scatter(T_correct[:, 1], T_correct[:, 2], alpha=0.7, label=’Reference Data 1’)
axes[1].scatter(T_error[:, 1], T_error[:, 2], alpha=0.7, label=’Test Data’, marker=’x’)
axes[1].set_xlabel(’PC2’)
axes[1].set_ylabel(’PC3’)
axes[1].set_title(’PC2 vs PC3’)
axes[1].legend()
axes[1].grid(True)

axes[2].scatter(T_correct[:, 2], T_correct[:, 0], alpha=0.7, label=’Reference Data 1’)
axes[2].scatter(T_error[:, 2], T_error[:, 0], alpha=0.7, label=’Test Data’, marker=’x’)
axes[2].set_xlabel(’PC3’)
axes[2].set_ylabel(’PC1’)
axes[2].set_title(’PC3 vs PC1’)
axes[2].legend()
axes[2].grid(True)

plt.tight_layout()
plt.show()

# Calculate correlation matrix
correlation_matrix = df_correct.corr()
rows, columns = correlation_matrix.shape
print(f"The matrix has {rows} rows and {columns} columns.")

# Heatmap of correlation matrix
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap=’coolwarm’, fmt=’.2f’, cbar=True)
plt.title(’Correlation Matrix Heatmap’)
plt.show()
threshold = 0.7
high_correlation_count = ((correlation_matrix > threshold) | (correlation_matrix
< -threshold)).sum().sum()

# Remove the diagonal (correlation of a variable with itself) from the count
high_correlation_count -= len(correlation_matrix)
print(f"Number of correlations above 0.7 or below -0.7: {high_correlation_count}")

# Hotelling’s T
mean_correct = np.mean(T_correct, axis=0)
cov_correct = np.cov(T_correct, rowvar=False)
inv_cov_correct = np.linalg.inv(cov_correct)
T2_correct = np.array([np.dot(np.dot((x - mean_correct), inv_cov_correct),
(x - mean_correct).T) for x in T_correct])

mean_error = np.mean(T_error, axis=0)
cov_error = np.cov(T_error, rowvar=False)
inv_cov_error = np.linalg.inv(cov_error)
T2_error = np.array([np.dot(np.dot((x - mean_error), inv_cov_error),
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(x - mean_error).T) for x in T_error])

# Q Residuals
Q_squared_correct = np.sum(Q_correct**2, axis=1)
Q_squared_error = np.sum(Q_error**2, axis=1)
q_threshold = np.percentile(Q_squared_correct, 95)

fig, axs = plt.subplots(1, 2, figsize=(16, 6))

# Plot T²
axs[0].plot(T2_correct, marker=’o’, linestyle=’--’, color=’green’, label=’Reference Data 1’)
axs[0].plot(T2_error, marker=’x’, linestyle=’--’, color=’red’, label=’Test Data’)
axs[0].set_title("Hotelling’s T2 Statistic")
axs[0].set_xlabel(’Sample Index’)
axs[0].set_ylabel("T2 Value")
axs[0].legend()
axs[0].grid(True)

# Plot Q Residuals
axs[1].plot(Q_squared_correct, marker=’o’, linestyle=’--’, color=’green’, label=’Reference Data 1’)
axs[1].plot(Q_squared_error, marker=’x’, linestyle=’--’, color=’red’, label=’Test Data’)
axs[1].axhline(y=q_threshold, color=’blue’, linestyle=’--’, label=’Threshold (95%)’)
axs[1].set_title(’Squared Prediction Error (Q Residuals)’)
axs[1].set_xlabel(’Sample Index’)
axs[1].set_ylabel(’Q Residual’)
axs[1].legend()
axs[1].grid(True)

plt.tight_layout()
plt.show()

# Low-pass filter
def lowpass_filter(data, cutoff_freq, fs, order=4):

nyquist = 0.5 * fs
normal_cutoff = cutoff_freq / nyquist
b, a = butter(order, normal_cutoff, btype=’low’, analog=False)
return filtfilt(b, a, data)

# FFT
def plot_fft_first_3_pca(T_correct, T_error, fs=1.0, padding_factor=4, cutoff_freq=0.2):

N = T_correct.shape[0]
padded_length = padding_factor * N
f = fftfreq(padded_length, d=1/fs)[:padded_length//2]
num_to_plot = min(3, T_correct.shape[1])

plt.figure(figsize=(8, 8.5))

for i in range(num_to_plot):
windowed_correct = T_correct[:, i] * windows.hann(N)
windowed_error = T_error[:, i] * windows.hann(N)

filtered_correct = lowpass_filter(windowed_correct, cutoff_freq, fs)
filtered_error = lowpass_filter(windowed_error, cutoff_freq, fs)

zero_padded_correct = np.pad(filtered_correct, (0, padded_length - N), mode=’constant’)
zero_padded_error = np.pad(filtered_error, (0, padded_length - N), mode=’constant’)
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fft_correct = fft(zero_padded_correct)
fft_error = fft(zero_padded_error)

plt.subplot(3, 1, i + 1)
plt.plot(f, np.abs(fft_correct[:padded_length//2]), label=’Reference data’, color=’green’,
alpha=0.8)
plt.plot(f, np.abs(fft_error[:padded_length//2]), label=’Test data’, color=’green’,
linestyle=’--’, alpha=0.8)
plt.title(f’Frequency Spectrum - PCA Component {i + 1}’)
plt.xlabel(’Frequency (Hz)’)
plt.ylabel(’Magnitude’)
plt.grid(True)
plt.legend()
plt.xlim([0, 0.15])

plt.tight_layout()
plt.show()

plot_fft_first_3_pca(T_correct, T_error, fs=1.0, padding_factor=4, cutoff_freq=0.2)
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B Appendix

Table 8: List of parameters in the dataset for Company A

H40 Cream Density Value H40 Cream Fat Value H40 Cream Flow Value

H40 Cream MassFlow Value H40 Cream Prot Value H40 Cream SNF Value

H40 Cream Temp Value H40 Cream TS Value H40 CreamFT Fat Value

H40 CreamRemix Density Value H40 CreamRemix Fat Value H40 CreamRemix Flow Value

H40 CreamRemix Flow ValueUS H40 CreamRemix MassFlow Value H40 CreamRemix Prot Value

H40 CreamRemix SNF Value H40 CreamRemix Temp Value H40 CreamRemix TS Value

H40 CreamSurplus Density Value H40 CreamSurplus Fat Value H40 CreamSurplus Flow Value

H40 CreamSurplus MassFlow Value H40 CreamSurplus Prot Value H40 CreamSurplus SNF Value

H40 CreamSurplus Temp Value H40 CreamSurplus TS Value H40 Product Density Value

H40 Product Fat Value H40 Product MassFlow Value H40 Product Prot Value

H40 Product SNF Value H40 Product Temp Value H40 Product TS Value

H40 ProductFT Fat Value H40 Rawmilk Density Value H40 Rawmilk Fat Value

H40 Rawmilk Flow Value H40 Rawmilk Flow ValueUS H40 Rawmilk MassFlow Value

H40 Skimmilk Density Value H40 Skimmilk Flow Value H40 Skimmilk MassFlow Value

H40 Skimmilk Temp Value H40W00BF011 Value H40W00BF020 D Value

H40W00BF020 FC ManValueCV H40W00BF020 FC PV H40W00BF020 M Value

H40W00BT022 Value H40W00Q0021 Value H40W10BF031 FC ManValueCV

H40W10BF031 FC ManValueSP H40W10BF031 FC PV H40W10BF031 Value

H40W10Q0050 Value H40W00Q0023 SW H40 Product Flow Value

Table 9: List of parameters in the dataset for Company B

H40W00BF020 D Value H40 Cream Fat Value H40W00BF020 M Value

H40 Cream Prot Value H40 Cream SNF Value H40W00BT022 Value

H40 Cream TS Value H40 Cream FatFT Value H40 Group0 PID PV

H40 Product Fat Value H40 Product MassFlow Value H40 Product FatFT Value

H40 Rawmilk Fat Value H40 Rawmilk Flow Value H40 Rawmilk MassFlow Value

H40W00BF010 D Value H40 Skimmilk Flow Value H40 Skimmilk MassFlow Value

H40W00BT012 Value H40 Skimmilk Flow Value H40W00BF020 D Value

H40 Cream PID ManValueCV H40 Cream PID PV H40W00BF020 M Value

H40W00BT022 Value H40W00Q0021 AO Value H40 Group0 PID ManValueCV

H40 Group0 PID ManModeSP H40 Group0 PID PV H40W10BF031 Value

H40W10Q0050 AO Value H40 Product Flow Value
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C Appendix

To collect all the data needed to perform the evaluations described in Section 10.2 in an e�cient
manner, a certain methodology is suggested. Manually tuning the volume in the PLC and the integral
time in the HMI enables quick and e�cient test structuring. For the first three data collections, the test
matrices are the proposed structure of tests, since this methodology simplifies comparisons between
datasets.

Firstly, it is crucial that the theory accumulated in this thesis is validated. This will be done through
a comparison, which will validate that the macroscopical behavior of the system with and without a
volume error present is representable by the simulations and that the behavior seen during the tests
based on simulation is visible in a real-world process. Therefore, collecting data from a system that
possesses perfectly identical characteristics as the real-world process is not strictly needed, as long as
it resembles the settings used in the test matrices su�ciently. The real-world should include a setpoint
change of the same size as the one used in the simulations. The comparison originating from these
collected datasets should be used to validate that the theory acquired from simulations is applicable
in a real-world process. As mentioned before, the proposed test matrix structure should optimally
be followed, since this simplifies the validating comparison between the simulation and the real-world
behavior.

Frequency spectrum analysis is the obvious choice for a detection technique, but it needs to be
further evaluated. As mentioned earlier, there are indications that the FSA can detect a volume
deviation in systems without the presence of a setpoint change. Since this drastically simplifies the
complexity of a potential implementation, it needs to be evaluated. To further investigate, real-world
data that do not include any setpoint changes should be collected. Furthermore, data collection
should be done analogously to the data collection mentioned earlier in this section and follow the same
structure. Establishing that the FSA is e�cient in detecting a volume deviation during steady-state
operation greatly simplifies a future implementation.

Data that include commonly occurring errors and disturbances should also be collected, preferably
using the same methodology and system described above. The purpose of this data collection is to
analyze how the di↵erent methods evaluated in this thesis are a↵ected by other deviations from a fully
functional process. To structure the collection of data, a professional with knowledge about the process
and common process deviations is needed to be sure that no obvious errors are missed or ignored, as
well as that the errors introduced are of relevance for the process.

To gain knowledge of the behavior of the system at di↵erent sites, where di↵erent process setups
display di↵erent process dynamics, data should be collected from these di↵erent sites. The goal of the
data collection is to gain an understanding of how the frequency where the oscillatory peak lies changes
depending on process dynamics and di↵erent process designs, so that a mapping of the behaviors can
be made. This data collection is a more prolonged collection process, in which data is collected during
the commissioning of new units. Moreover, this method used to collect data is not as rigid as for the
other scenarios, and the data collection will be a part of the proposed implementation rather than a
test to be performed before implementation to validate the theory.

The suggested data collection is listed below.

1. Data validating the simulation.

2. Data assessing the potential of FSA on steady-state operation.

3. Data containing other errors.

4. Data giving knowledge about the e↵ect of di↵erent process dynamics on the detection. The
collection is performed as part of the test sequence.

To e�ciently gather these data, the same structure as used in the thesis is suggested. For the first
datasets mentioned above, the system should optimally have su�ciently similar settings and process
dynamics, and use the same recipe changes during the setpoint change. The process from which the
data are collected must have some known characteristics, such as the actual volume of the process, so
that the volume deviation can be manually changed. For the second datasets, the data collection should
be done analogously to the first datasets, except the fact that no setpoint change should be introduced.
However, it is still recommended that the structure of tests follow the same matrix methodology so
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that comparison between the first and second datasets can be done in an easy manner, determining the
potential of FSA in steady-state. It is also worth mentioning that these two collections of data will be
the foundation for the test case implementation, which is the suggested detection technique. Preferably,
the settings used during these tests, optimally the same settings used for either of the matrices in this
thesis, should be the settings used during the test case implementation, unless di↵erent settings are
deemed to be more e�cient during testing or due to the process being commissioned not resembling
the system used in the test matrices enough. These tests will therefore also potentially explore the
threshold of the test case implementation, since di↵erent volume errors and di↵erent integral times
will be evaluated. These comparisons will give an idea of how the threshold should be implemented
for these systems, depending on the size of the volume error that is the target of detection. This
idea is assumed to be su�ciently translatable between processes and is applicable in systems with
di↵erent process characteristics as long as the di↵erences are not major. This assumption is done due
to the two systems simulated in this thesis displaying moderate, if not large di↵erences in process
dynamics, with high di↵erences in parameters such as raw milk mass flow, but seemingly displaying
similar amplitudes in compensated systems with present volume errors. This can be seen in Figure
31d and Figure 36d. Note that the volume errors are not equal and that the compensation is not
equal in magnitude. However, this is expected since these systems have di↵erent process dynamics,
which results in smaller volume deviations a↵ecting the system more for the second figure. However,
analyzing this from a wider angle and identifying that both systems are compensated and do not show
signs of a present volume error, it can be concluded that a latent volume error in a compensated
system, regardless of process dynamics, will have similar amplitudes of the oscillations. Although, if
the process as mentioned earlier can not be tuned to remotely resemble one of the evaluated process
dynamics, new data should be collected for the sole purpose of analyzing this specific system.

The third dataset should preferably be collected last, since successful validations from the afore-
mentioned datasets result in flexibility for these tests. Should the second comparison described indicate
that FSA works equally well or potentially better for steady-state operations, these datasets should
optimally be performed on datasets with no setpoint errors. If the opposite is true, and FSA displays
higher detection accuracy during a setpoint change, these tests should be structured with a setpoint
change instead. Lastly, this section will not describe what errors should be included during these
tests, since this is knowledge not currently available. These decisions should be made by a Tetra Pak
professionals with su�cient knowledge about the TPSU and common process deviations.

The fourth data collection is slightly di↵erent and will be a more prolonged test. The purpose of this
analysis is to determine at what frequency the oscillation occurs for di↵erent systems. As mentioned
in earlier sections, this data gathering might not be needed for all systems, unless the system dynamics
is significantly di↵erent from the two systems evaluated in the test matrices. However, the process
will be explained for the cases where it is necessary. Since data collections 1 and 2 in C will evaluate
the potential threshold for the test case implementation, the only remaining degree of freedom is the
frequency at which oscillations occur. This frequency might vary with di↵erent process dynamics
and will need to be analyzed. This procedure should be performed during the commissioning of new
units, where the detection should be used on the machine with a high volume error and insu�cient
compensation in terms of integral time. This result gives a clear indication of at which frequency the
oscillation will occur, which simplifies the analysis of the future test case implementation for the unit
in question. This data collection is the reason for the creation of the second test case implementation
shown in Figure 41. This data collection is, as mentioned, a more prolonged collection, where di↵erent
frequencies for di↵erent systems are collected and mapped. The data collection does not have to be
done pre-implementation to validate any theory like the other comparisons mentioned in this section.
However, this is still discussed in this paragraph because it involves data collection that must be
performed in the future for the implementation to work optimally even though the collection is an
important part of the proposed test sequence. For this to be valid, it is important that the third
comparison mentioned previously, which accounts for di↵erent types of errors and disturbances, is
performed in a thorough manner so that it is certain that the volume deviation is the origin of the
measured oscillation and not another unrelated disturbance for the system being analyzed. This must
be done to avoid losing validity during the execution of the test case implementation that locates the
frequency of the oscillation induced by the volume error.
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D Appendix

The results obtained from Test Matrix 2 for the residuals are presented below.

Figure 43: Figures showing Hotellings T 2 (left) and Q residuals (right) for Test 2 in comparison with
Reference test 2. �V = 2 l, Ti = 5 s

(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 44: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 7.5 s

for (a) Test 3 in comparison with Reference test 2, (b) Test 4 in comparison with Reference test 2,
(c) Test 5 in comparison with Reference test 2 and, (d) Test 6 in comparison with Reference test 2.

Furthermore, (d) shows a system unstable due to a large volume deviation.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

Figure 45: Figures showing Hotellings T 2 (left) and Q residuals (right) for Ti = 12.5 s

for (a) Test 7 in comparison with Reference test 2, (b) Test 8 in comparison with Reference test 2,
(c) Test 9 in comparison with Reference test 2 and, (d) Test 10 in comparison with Reference test 2.

Furthermore, (d) shows a system unstable due to a large volume deviation.
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(a) �V = 0 l (b) �V = 2 l

(c) �V = 4 l (d) �V = 6 l

(e) �V = 8 l

Figure 46: Figures showing Hotellings T 2 (left) and Q residuals (right) for (a) Test 11 in comparison
with Reference test 2, (b) Test 12 in comparison with Reference test 2, (c) Test 13 in comparison with
Reference test 2 and, (d) Test 14 in comparison with Reference test 2, and (e) Test 15 in comparison
with Reference test 2. Furthermore, (e) shows a system unstable due to a large volume deviation.
Ti = 17.5 s
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